
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A268 937
lulIIII~ III II MIII I ~ iI III II

DTICS ELECTE i
SEP 0 81993 D1

A THESIS

The Instrumentation of the Multibackend Database System

by

Andrew Perry Meeks

June 1993

Thesis Advisor: David K Hsiao

Approved for public release; distribution is unlimited.

93-20720
Illlllll.r"

j •'• ~~I- -. '

UNCUSSIIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGSUNCLASSIFIED

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATIONiDOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

4NAME OF gEi:FORMG ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Computer cince ept. (if applicable) Naval Postgraduate School
Naval Postgraduate School CS

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, andZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
The Instrumentation of the Multibackend Database System (U)

IIKQ,,EffS"AL 'U-IHW,(S)
M KS , Andrlew P~erry

as. TYP• RPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
aster s Keesis FROM _6/92 TO 06/93 1993, June 10 109

16. SUPPLEMENTARY NOTAI ION The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD IGROUP SUB-GROUP Parallel Database, Multilingual and Multimodel Database System,
MultiBackend Database Computer, Heterogeneous Database System

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Most database system designs and implementations are limited to single language (monolingual) and single model (mono-

model) database systems. No one database language and model can meet every data processing need. As a result, diverse (het-
erogeneous) database management systems are used in a large organization. This approach results in more processing cost and
less data sharing. Therefore, there is a growing need for a solution to the processing cost and data sharing problems of hetero-
geneous database systems. One solution is a multimodel and multilingual database system (MM & MLDS) as implemented on
the Multibackend Database Supercomputer (MDBS). This solution can support an appropriate language and model correspond-
ing to each set of application requirements. In addition, this solution lends itself to data sharing by not only storing all the data
in one kernel data model form, but also by allowing cross-model data accessing.

The goal of this thesis is to make the MDBS viable as a kernel database management system. First, we introduce the multi-
model, multilingual, multibackend database supercomputer which has been found as a solution towards heterogeneous database
sharing. Second, we increase the utilization of MDBS by introducing the system generation software management tool. Finally.
we ease the learning curve associated with MDBS by documenting the entire system structure including all the files needed to
compile and run the system.

20. DIS••IBUT WAVAILABIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[]UNCLASSIFIED/UNLIMITED []SAME AS RPT. [] DTIC USERS UNCLASSIFIED
1.IpNlc•jP.ESPONSIBLE INDIVIDUAL 22b TELPHONE1nclude Area Code) 2 2c•,=,E SYMBOLI%•Alf li.rsiao (408) 65-23 9/ fl-q

WD FORM 1473, e4 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All oaher edilons are obsolete UNCLASSIFIED

i

Approved for public release; distribution is unlimited

The Instrumentation of the MultiBackend Database System

by
Andrew Perry Meeks

Lieutenant, United States Navy
Bachelor of Science (Computer Science), Purdue University, 1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1993

Author:
Andrew Perrý Meeks

Approved By:
Dr. David K. Hsiao, Thesis Advisor

Dr. C. Thomas 4uSecond Reader'

Gary Ha, Chkirman,

Departmrnt-ef-omputer Science

ii

ABSTRACT

Most database system designs and implementations are limited to single language

(monolingual) and single model (monomodel) database systems. No one database language

and model can meet every data processing need. As a result, diverse (heterogeneous) data-

base management systems are used in a large organization. This approach results in more

processing cost and less data sharing. Therefore, there is a growing need for a solution to

the processing cost and data sharing problems of heterogeneous database systems. One so-

lution is a multimodel and multilingual database system (MM & MLDS) as implemented

on the Multibackend Database Supercomputer (MDBS). This solution can support an ap-

propriate language and model corresponding to each set of application requirements. In ad-

dition, this solution lends itself to data sharing by not only storing all the data in one kernel

data model form, but also by allowing cross-model data accessing.

The goal of this thesis is to make the MDBS viable as a kernel database management

system. First, we introduce the multimodel, multilingual, multibackend database super-

computer which has been found as a solution towards heterogeneous database sharing. Sec-

ond, we increase the utilization of MDBS by introducing the system generation software

management tool. Finally, we ease the learning curve associated with MDBS by document-

ing the entire system structure including all the files needed to compile and run the system.

Ac•cesion For

NTIS CRA&I
DR.L: TA8 .

LU a :C'u:•ced D-

By..............By

Availaitlity -' .es

r, , I- Dist I l or

111..

TABLE OF CONTENTS

I. THE INTRODUCTION ... 1

A. MY MOTIVATIONS FOR THE THESIS TOPIC .. 1

B. THE SCOPE AND OBJECTIVES OF THE THESIS 4

C. ORGANIZATION OF THE THESIS .. 4

II. A DESCRIPTION OF THE MDBS .. 6

A. THE ARCHITECTURE ... 6
B. ITS HARDWARE CONFIGURATION .. 10

1. N etw ork .. 11

2. Controller ... 12

3. Backends ... 12
C. ITS SOFTWARE CONFIGURATION .. 13

1. Controller Processes ... 13
2. Backend Processes ... 17

D. SUM M ARY .. 17

TII. THE ORGANIZATION OF A SYSTEM GENERATION SOFTWARE 18

A. BACKGROUND ... 18

B. OVERALL DESIGN REQUIREMENTS ... 19

C. FUNCTIONS OF A SYSTEM GENERATION MANAGEMENT TOOL... 19
D. FUNCTIONS IMPLEMENTED FOR MDBS .. 24

E. THE ORGANIZATION OF MY SYSTEM CODE 24
F. A SUMMARY ... 25

IV. USING THE SYSTEM GENERATION SOFTWARE 26

A. TO START MDBS .. 26
B. TO RECONFIGURE THE BACKENDS .. 26

C. FOR CONFIGURATION MANAGEMENT ... 26
D. FOR VERSION CONTROL .. 27

V. AREAS FOR FURTHER STUDY WITH THE MDBS 28

A. UPGRADING EQUIPMENT .. 28
B. INTEGRATING THE TWO MAIN VERSIONS 10

C. IMPROVING EXISTING MODULES .. 29
D. THE USER INTERFACE .. 30

iv

E. IMPLEMENTATION OF MORE CROSS-MODEL ACCESS 31

F. REDISTRIBUTION OF DATA IN AN EXISTING DATABASE 31

G. UPGRADING EXISTING CODE FROM C TO C++ 32

H. MULTIPLE USER AND MULTIPLE DATABASE 32

VI. PR OBLEM S .. 33

A. RETRIEVE - COMMON ... 33

B. SOFTWARE RELIABILITY .. 34

VII. CONCLUSIONS ... 36

A. WHAT I HAVE ACCOMPLISHED .. 36

B. SOME FUTURE AREAS OF RESEARCH RELATED TO THIS WORK..37

APPENDIX A. FILE ORGANIZATION OF MDBS ... 39

A. CONTROLLER ... 40

B. BACK END ... 46

APPENDIX B. HOW TO START AND RECONFIGURE MDBS 48

A. TO START MDBS .. 48

B. TO RECONFIGURE MDBS .. 52

C. TO DISTRIBUTE BACKEND EXECUTABLE CODE 53

D. TO CHANGE VERSIONS ... 55

E. TO LOAD MDBS ON A NEW MACHINE ... 57

F. SAMPLE ERROR MESSAGES ... 58

1. Invalid Option ... 58
2. Incorrect new version name ... 58

3. Incorrect version for pwd .. 58

4. Include file out of date .. 59

5. Missing file configuration file ... 59

6. Missing or Incorrect process names .. 59

APPENDIX C. ON-LINE DOCUMENTATION .. 60

APPENDIX D. FLOW CHARTS FOR SYSTEM GENERATION SOFTWARE 62

APPENDIX E. SOURCE CODE FOR SYSTEM GENERATION SOFTWARE 67

APPENDIX F. MISCELLANEOUS FACTS ABOUT USING MDBS 86

V

A. HOW TO START-UP THE SYSTEM AFTER THE POWER GOES OFF. 86

1. For dbl - db9 ... 86
2. For Sun4 Workstations .. 86

B. SOURCE DIRECTORY LOCATION ... 87

C. COMPILING .. 87

D. COMPILING AN INDIVIDUAL PROCESS .. 89
E. DEBUGGING AND FLAGS ... 89

F. THE HIGHER LEVEL LANGUAGE INTERFACES 90

G. CHECKING THE HARDWARE CONFIGURATION 91

H. THE DEVELOPMENT CYCLE .. 92
I. RUNNING THE SYSTEM ... 92

J. UTILITY PROGRAMS .. 93

APPENDIX G. SELECTED MDBS FILE LISTINGS ... 94

LIST OF REFERENCES ... 99

INITIAL DISTRIBUTION LIST ... 100

vi

LIST OF FIGURES

Figure 1, The Multimodel, Multilingual and Cross-Model Accessing Capability 7

Figure 2, Architecture of the DBC .. 9

Figure 3, The Multibackend Database Supercomputer (MDBS) II

Figure 4, Interrelation of System Processes .. 14

Figure 5, The Multimodel and Multilingual Database System 15

Figure 6, The Model-Language Interfaces on MDBS .. 16

Figure 7, Directory Structure of the MDBS files on the controller 39

Figure 8, Directory Structure on Backend Machines .. 46

Figure 9, Documentation of MDBS design and structures 60

vii

ACKNOWLEDGEMENTS

I would like to thank Dr. David Hsiao for his time and patience while I learned the

Multimodel and Multilingual Database System on the Multibackend Database

Supercomputer (MDBS) and later while he reviewed the thesis. Without his knowledge and

expertise, this project and thesis would not be possible.

I would also like to thank the support staff at the Naval Postgraduate School for their

help. Particularly John Locke and Susan Whalen for their assistance with the MDBS.

Viii

I. THE INTRODUCTION

A. MY MOTIVATIONS FOR THE THESIS TOPIC

Over the past few decades there has been a rapid increase in storage1 and processing 2

capacity of computers (Elmasri, 1989, p. 637). While the capacity increases, the cost for the

same amount of capacity decreases. One would expect the overall performance for

computer programs and systems to improve. This has been the case for the general-purpose

computer; however, one application for the general-purpose computer has not kept up with

the growth. This application is called database management. In the following references we

note that database systems have unique hardware needs that are not normally built into

general-purpose computers.

...the overall performance of database systems is still a great concern. [There is
a]...mismatch between access speeds of secondary storage devices and those of central
processing units leading to inevitable delays in processing large volumes of data
stored on disk. Compared to the advances in speeds of processors...the rate of increase
of speeds of secondary storage devices (mainly disks) have been slow. (Elmasri, 1989,
p. 637-8)

Typical database management operations require the processing of 90-95 percent
of related data for the purpose of producing 5-10 percent of useful information....
(Banerjee, 1979, p. 137)

...data is not stored at the place where the data is processed. To 'stage' the data
in the main memory for processing is very time consuming. It often ties up important
resources of a computing system such as communication lines, channels, and data
buses. Ideally, data should be processed at the place where they are stored to avoid
spending time in moving data between the main memory and the secondary memories.
(Su, 1979, p. 430)

Methods to improve the performance of database systems can be considered in two

main categories: software and hardware. The software-only approach uses indices, file-

.Over the past 20 years, data storage capacity for a moving head disk has doubled every three
years and Dynamic Random Access Memory storage density has quadrupled every 3 years (Hen-
nessy, 1990, p. 17).
I Growth of Performance over the last 20 years ranged from 18% to 35% depending upon com-
puter class (Hennessy, 1990, p. 3).

1

organization techniques, intra-data pointers, data compaction, directories, cross-reference

pointers, computed addressing, to name a few, which alleviate the speed problem to a

certain extent (Su, 1979, p. 430). Unfortunately the software-only approach brings with it

additional cost. The cost and overhead are the requirement for more storage and increased

processing time. The overhead includes, for example, maintenance of indices, computation

of pointers, and performance of compaction algorithms.

A second approach is the hardware approach. Several database machines have been

proposed over the last two decades. The following is a list of some of the proposed

hardware concepts: associative memory (DeWitt, 1979), backend computers, cellular logic

(Schuster, 1979), cross-bar network (DeWitt, 1979), function-specialized (Banerjee,

1979), logic-per-track (first introduced by D. L. Slotnick), (Su, 1979), (DeWitt, 1979),

(Schuster, 1979), multiprocessor systems (DeWitt, 1979), and special purpose processors

(Su, 1979), (Banerjee, 1979). Few have been successfully built and even fewer have

become commercial products.

The ideal database computer should use the optimal software techniques combined

with the optimal hardware designs. The ideal database computer has not been built. One

database machine, known as the Multibackend Database Supercomputer (MDBS), is at the

Naval Postgraduate School's Laboratory for Database Systems Research. This system

which started development in the early 1980's, is fundamentally based upon the Database

Computer (DBC) described in (Banerjee, 1979). This system not only addresses a solution

to the problem of processing large amounts of data efficiently, but is also a multilingual and

multimodel database system.

What is the significance of a multilingual and multimodel database system? Consider

large organizations which often use multiple database models and languages to meet their

database needs. Three typical databases would be for inventory, personnel, and product

assembly. An inventory (consisting of suppliers, supplies, and orders) can best be modeled

with a network database system. A personnel database can best be maintained with a

relational database system. And a product assembly (consisting of products, assemblies,

2

sub-assemblies, parts, and so on) can best be supported by a hierarchial database system.

In addition to the different models and languages, there are often more than one database

with the same information. One example is a personal database for a social roster on one

machine and a payroll database on another machine. Both databases have a person's name

and address among other information.

Some results of having different models and languages are as follows. First there is a

lack of datashbaring. Since the heterogeneous databases 3 cannot communicate between

themselves, all inforrmation must be maintained by each system even if the same data exists

in another database system. The lack of data sharing increases the storage capacity needed

to maintain the separate databases. Second, the duplicate information stored leads to data

inconsistency problems. If one updates a database, then another database with the same

information will be incorrect until it is also updated. Third, personnel who know how to use

one database model and language have to be retrained to use another model effectively.

This specialization makes it more costly (and harder) to move personnel between jobs,

since it requires knowledge of a database model with which the personnel are not familiar.

This problem affects the total cost and effectiveness of maintenance and support of

database systems.(Hsiao, 1992, pp. 127-132), (Chung, 1990, p. 70)

The fact that different models exist does not mean that we should look for a single or

universal data model and language so that we can convert all present and future databases

into one model and language just to cut the cost of maintenance and support. At the same

tume we should not ignore the problem. One solution to the heterogeneous data sharing

problem was proposed by (Hsiao, 1989). This solution has been partially implemented on

the Multibackend Database Supercomputer (MDBS) at the Naval Postgraduate School

(NPS).

Recognizing that no one database model or language can meet all database needs, this

solution supports all database languages. All data is stored using a kernel data language (the

I Heterogeneous in the sense that there are multiple data models.This is not to be confused with
different dialects of the same model and language. Nor does refer to different hardware.

3

Attribute Based Data Language) and requires that each database language interface store

its data using the kernel data language. This design was chosen since it reduces the cross-

model data translations from n2 - n to n - 1. Where n is the number of database languages

implemented by the system. (Hsiao, 1992)

B. THE SCOPE AND OBJECTIVES OF THE THESIS

My objective of the thesis is three fold. First, to introduce the multimodel,

multilingual, multibackend database supercomputer which has been found as a solution

towards heterogeneous database sharing. Second, to introduce the system generation

software management tool. And finally to document the structure of the MDBS files needed

to compile and run the system.

There should be an automatic way to generate, manage, and control various versions

of a database system with little or no human intervention and support. This would be good

for the systems administrator or developer, but is of little concern to the user. Since there

are few parallel and distributed database systems in existence, there is a lack of

methodology in developing these systems. On the other hand, most contemporary database

computers are not parallel; thus they do not have multiple backends. There is little need to

distribute multiple copies of the same code to multiple backends on contemporary database

computers, since they do not have backends. Methods for version control and

configuration management of system software for the scalable and parallel database

computer must be developed to simplify the design process and final usability of the

system. Thus methods of design and implementation of a system generation management

tool for a specific parallel and multibackend system must be. developed. In this thesis, I will

demonstrate the feasibility of constructing such a tool on our research database computer,

MDBS.

C. ORGANIZATION OF THE THESIS

In Chapter U of this thesis, I provide an overview of the hardware and software of the

Multilingual, Multimodel, Multibackend Database Supercomputer (MDBS). In Chapter

4

III, I describe what system generation software is and what functions it should provide. In

Chapter IV, I describe how my system generation software is implemented and how the

code is organized. Areas for future study are addressed in Chapter V. The appendices

contain much information about the MDBS software which has not been put into one place

before.

I5

II. A DESCRIPTION OF THE MDBS

A. THE ARCHITECTURE

There are two aspects of the MDBS which make it a powerful database computer. The

first aspect is the multi-lingual/multi-model capability and the second aspect is scalability

with parallel backends.

As described in the previous chapter, MDBS uses the Attribute Based Data Language

(ABDL) as the kernel or common data language to store all databases. Figure 1 shows the

relationship between various database users and how a database is viewed and stored. There

are five1 language interfaces on the system, attribute based, network, hierarchial, relational,

and object-oriented. Each the language interface uses a schema to view a particular

database (which it can access). Limited cross-model 2 capability exists on MDBS, relational

to hierarchial and relational to object-oriented.

The parallel processing capabilities of MDBS were based upon the Database

Computer (DBC) described in (Banerjee, 1979) and roughly depicted in Figure 2. The

Database Computer had many optimizations built-in to make it as quick as possible in

processing database queries. Some optimizations which DBC used were (1) modified

moving head disk controllers which could data from all each tracks in one cylinder

simultaneously, (2) partitioning to evenly distribute the base data to ensure maximum

number of heads (or tracks) in each cylinder are being used, (3) arranging then processing

queries in conjunctive normal form, and (4) clustering of data. The DBC architecture broke

query processing into several stages and placed single processors at four stages and

multiple processors at the base data and where the indices are stored and processed. The

four units with single processors are the database command & control processor (DBCCP),

keyword transformation unit (KXU), index transformation unit (IXU), and security filter

L A sixth one, functional, is in the process of being added.
2. A database user can access (retrieve, update, delete, or insert) one database using a different lan-

guage than was used to create and/or update the database. For example, a hierarchial database can
be accessed by the relational language interface hrough a one time schema transformation.

6

A kernel A hierarchical An object-oriented
database user database user database user

The kernel data modl The hierarchical daa The object-oriented data
and kernel data model and DLI m nodel and object-oriented

language interface interface Adata language interface

A kernel A hierarchical An object-oriented
database schema d schema database schema

AA A A An
A network hierarchical relational object-oriented

kernel database database database database
database daabnein inin i

the kernel the kernel the kernel the kernel

form form form form

A relational database schema FA relational database schema
for the hierarchical database or the object-oriented database

A network •A relational
database schema da

The network data model_
aThe relational data modeland Codasyl-DML and SQL face

interfaceanSQ itefc

A network A relational
database user database user

Figure 1. The Multimodel, Multilingual and Cross-Model Accessing Capability

7

processor (SFP). Multiple processors were placed the main memory (MM), the structure

memory (SM) and the structure memory information processor (SMIP). The MM is a

moving head disk drive with a controller modified to simultaneously read and process data

from all tracks in one cylinder. The SM can be either bubble memory or charged coupled

devices (CCD' s). There is one processor per track in the SM and one processor per memory

unit in the SMIP. These processors worked in parallel on various stages of query

processing. The structure loop was designed to limit main memory search space, determine

authorized records for accesses, and for clustering records received for insertion into the

database. Two advantages of interest of the DBC are (1) an estimated speed up of over 80

times that of a database system implemented on a general purpose computer (single CPU,

single disk machine) and (2) the method of storing data in partitions was intended to

segregate data as it was stored for a multi-level security database3.

For various reasons, the DBC was never built. In 1980 Dr. Hsiao decided to use "off

the shelf" equipment to implement a simplified version of DBC. This version only used one

processor (per controller and per backend) to perform the tasks that had been designed to

be performed by the multiple processors of the DBC design. Since the disk controllers were

not modified, the data could not be processed as it was read from the disk. Without the

multiple processors on each backend there was a significant loss in the speed-up that would

have occurred with the DBC design. This system was modified and expanded and then

moved to the Naval Postgraduate School in 1983. It is now known as the Multibackend

Database Supercomputer (MDBS).

One strength of MDBS is the method used to store database data on the backends. As

a database is loaded, it is divided into clusters of similar data descriptors4 . Using clusters,

3. The multi-level security topic is not related to this thesis, but is very relevant to a Department of
Defense (DOD) application. The access authorization for a user or process would determine which
partitions of data were within the authorized clearance level for that user or process. A good design
for storing classified data on the DBC would not allow reading any unauthorized data from the data
disk
4. A descriptor is an attribute value or range of values and is used to group the data.

8

Structure Memory

Information Processor .I .. Structure

(SMIP) Memory (SM)

Structure Loop

1 Keyword
Index Transformation / Transformation
Unit (IXU) /Unit (KXU)

/

Program Execution Data Base Command
System (PES) & Control Processor
Front End Computer (DBCCP)

Data Loop Mass Memory (MM)

Security Filter (moving head disk for
Processor (SFP) base data)

Data Flow

Control

Figure 2. Architecture of the DBC

9

the base data5 is spread evenly across the backends. This even division of data across the

backends maximizes parallel query processing on the backends.

A second strength of MDBS lies in its ability to easily change the database storage

capacity and the amount of parallelism. This can be done by changing the number of

backends in the configuration. As a database grows over time, reaching the capacity of an

existing system, the traditional solution is to get a bigger and faster computer. Once the

replacement system is found then (1) a database system must be installed, (2) the data must

be reloaded on the newer system, and (3) the existing queries must be rewritten and tested

for the new system. Solving the database growth problem on the MDBS is much simpler.

To enlarge the MDBS, one buys more backend machines, backs up the database, adds the

new backends to the configuration, and reloads the database on the new configuration. By

reloading the database, its data is now redistributed over all backends for the new

configuration and is ready for use.

With the database distributed across the backends, each time the controller sends a

query to the backends, each backend does some work in parallel. Thus the parallel

processing capabilities are achieved on MDBS by the multiple backend capability and to a

lesser extent by having separate disks for base data, meta-data6 , and paging.

B. ITS HARDWARE CONFIGURATION

A fairly detailed description of the multibackend database supercomputer (MDBS)

can be found in (Hsiao, 1991). Figure 3 shows an overview of the configuration. At the

time of this writing, the MDBS is being ported to a new controller 7 and backend 8.

5. Base data is stored as attribute-value pairs using the Attribute Based Data Model (ABDM).
6. Metadata is information about the base data. To access the base data to find the appropriate clus-
ter(s). The backend can then directly access the base data using the cluster identifier(s). For more
details see (Hsiao 1991).
7. The new controller is a Sun model 4/110 workstation called dbll which has the Sparc 4 RISC
architecture with 8 Megabytes of random access memory (RAM) and one 373 Megabyte hard
drive.
8. The two backends, dbl2 and dbl3, are Sun model 4/280 workstations which each have Sparc 4
RISC architecture with 16 Megabytes of RAM, one 96 Megabyte disk for paging, one 96 MB disk
for meta-data, and one 1000 MB hard disk for data.

10

Meta data disk
Base data disks

Tape Drive Paging disk

Meta data disk

Paging disk

0
* 0

* 0

Meta data disk
Base data disks

Paging disk

Figure 3. The Multibackend Database Supercomputer (MDBS)

1. Network

The local area network (LAN) consists of the Ethernet cable, the backplanes and

their transceivers. There is one LAN for the MDBS. The controller, db8, acts as the

gateway to the local computer science LAN. Each backplane has an Intel 80186

microprocessor and 128-Kilobytes of real memory. The 80186 processors work in

conjunction with another processor, an Intel 82586, which supports the transmission

control protocol/internet protocol (TCP/IP). The Ethernet cable has a transmission rate of

11

10 Mega bps. The Ethernet allows messages to collide, but the user defined protocol (UDP)

software helps make unreliable broadcasting reliable.

2. Controller

The controller supports the user interface as well as communications with each

backend. The controller is an Integrated Solutions (ISIV) model V24S workstation with a

16 MHz 68020 microprocessor, 4MB ram, a 96 Megabyte paging disk to support virtual

memory, 96 Megabyte disk for system and user files, and a tape drive. The controller is

connected to the backends via one backplane and to the local computer science department

network via a second backplane. When the database system is executing, the controller

communicates with the backends via sockets. The magnetic tape drive on the controller can

be used for mass loading of a database, back-ups of a database, and normal back-ups of all

existing files.

3. Backends

Although MDBS is capable of supporting many backends, there are three

backends 9 in the network. Each backend is an Integrated Solutions (ISIV) model V24S

workstation with a 16 MHz Motorola 68020 microprocessor, and three disk drives. One 96

Megabyte Winchester-type disk drive is used for paging, another 96 Megabyte disk is used

to store the meta-data. The base data is stored on a 500 Megabyte moving-head disk.

Communications with the controller are handled by the backplane which communicates

with the controller and other backends via the Ethernet Each backend maintains the meta-

data table for the entire database. The backends for the database computer are not required

to be identical machines.

9. The system had as many as eight backends. With two backends on loan and three suffering from
old age, there are only three which can be used.

12

C. ITS SOFTWARE CONFIGURATION

The MDBS uses UNIX10 Berkeley Software Distribution (BSD) 4.3 operating

system. All of the software is stored and compiled on the controller. When the backend

code is compiled it must be distributed from the controller to each backend. To make the

compilation and distribution process simpler, identical CPU and operating systems are used

for contoller-backend combinations under development. On-line backups of code can be

stored on the backends. To support MDBS, there are six processes which run on the

controller11 and six other processes which run on each backend 12 in parallel.

1. Controller Processes

The six processes on the controller are the user interface (TI13), controller get

(CGET), controller put (CPUT), request preparation (REQP), post processor (PP), and

insert information generator (11G). A simplified diagram of how the six processes

interrelate is in Figure 4.

The process--by the far the largest--is TI which implements the data language

interfaces described at the beginning of this chapter and the cross model capabilities of the

MDBS. This process maps each data model and language to the kernel data language

(KDL) and kernel data model (KDM). On MDBS, kernel data is stored using the attribute

based data model (ABDM) 14 and attribute data language (ABDL). For each data language,

there are four software modules which make up the user interface (illustrated in the shaded

10. UNIX is a registered trademark of AT&T Bell Laboratories, Inc.

"11. Appendix A contains a directory tree of all the files in the MDBS. Specifically, the controller
processes (cget, cput, fig, pp, reqp, ti) are located in the directory VersionName/CNTRL/ and are
compiled from source code in the corresponding subdirectories (CCOM, CCOM, 1iG, PP, RECP,
Tr) of CNTR4/.
12. Appendix A contains a directory tree of all the files in the MDBS. Specifically, the backend pro-
cesses (bget, bput, cc, dio, dirman, recp) are located in the directory Version_Name/BE/ and are
compiled from source code in the corresponding subdirectories (BCOM, BCOM, CC, DIO, DM,
RECP) of BE/.
13. TI stands for test interface, which has become the normal user interface.
14. The ABDM was chosen for various reasons including separate modeling of base data and meta

data, the ease of clustering base data into mutually exclusive sets for storage on backends. Its
semantic richness allows for other languages to be translated into the ABDL.

13

Controller

ITI

_ _ Ethernet To Other

Backend

Disk drive Disk drive - -•

Figure 4: Interrelation of System Processes

14

area of Figure 5). These are the language interface layer (LIL), the kernel mapping system

UDM: User Data Model
UDL User Data Language
LIL Language Interface Layer
KMS: Kernel Mapping System
KFS Kernel Formatting System
KC Kernel Controller
MLI Model/Language Interface
KDS: Kernel Database System
KDM: Kernel Data Model
KDL : Kernel Data Language

Figure 5. The Multimodel and Multilingual Database System

(KMS), the kernel formatting system (KFS), and the kernel controller (KC). When starting

MDBS, the user chooses which data model and data language interface with which he

wants to view a database. The model he chooses is called the user data model (UDM) and

the language corresponding to that models the user data language (UDL). Once a language

has been chosen, the user communicates with the LiL corresponding to that language (see

Figure 6). For a detailed description of how the software modules interact, see (Bourgeois,

1993, pp. 7-24).

Communications with the backends are handled by two processes, CGET and

CPUT. The CPUT process sends database creation and queries to the backends. The CGET

process receives acknowledgments for creations and receives the results of the queries from

15

UDM KI

UUL

Figure 6. The Model-language Interfaces on MDBS

each backend. The REQP process receives database transactions from the KC in the TI

process and-sends them to the backends through the CPUT process. The PP coordinates

responses from the backends and returns the results of a user query to the KC in the TI

process.

The IIG process is used to determine which backend will insert a particular

record. During an insert operation, the IIG process tells a specific backend--via the CPUT

process--whether to start a new track or put the record being inserted into an existing track.

The IIG process uses a space utilization table from which it can determine for each cluster

which backend contains the last full track of the cluster, and can determine the first

available track for inserting a new track of clustered records.

16

2. Backend Processes

The six processes on each backend are backend get (BGET), backend put

(BPUT), concurrency control (CC), data disk input/output (DIO), directory management

(DIRMAN), and record processor (RECP). Each oackend communicates with the front end

and the other backends via BGET and BPUT. The CC process allows concurrent database

access by multiple requests. The DIO process deals with disk addresses of data and

optimizes disk accesses. The DIRMAN process accesses the meta-disk to perform look-ups

in the descriptor and cluster tables to produce disk addresses. Finally, the RECP process

performs data retrieval, storage and processing required on whole records and sends its

output to the BPUT process.

D. SUMMARY

There a multitude of computer systems in industry, government, and education today.

With the growing expense of maintaining these systems, there is a greater interest in

communication between heterogeneous databases. The Multibackend Database

Supercomputer, design offers one solution by storing all databases using one language, a

kernel data language, and providing multiple model/language interfaces to the users of the

databases. An added benefit of MDBS is its scalability which is inherent to its parallel

backend design.

17

I1. THE ORGANIZATION OF A SYSTEM GENERATION
SOFTWARE

A. BACKGROUND

Computers are being used to perform many tasks which we used to do. The examples

are endless, from word processing to database management, from computer aided design

in manufacturing to process control, and from monitoring someone on a life-support system

to monitoring the skies for incoming missiles or "hostile" airplanes. As computers continue

to become more powerful, they can be used to perform even more impressive tasks. It is

important to note that when you compare a computer to a human, the computer will be

superior in several categories. Compared to human beings, computers are much cheaper,

they can perform various functions quicker and more accurately, with well written

programs they are more reliable, they are free from boredom, they can analyze input

quicker, they can produce output quicker, they do not need to unlearn a previous task or do

they require training for a new task, they can operate in hostile environments (hot, cold,

high radiation, no atmosphere), and they do not have personal difficulties (family, marital,

vacations, pay & benefits, or deaths to deal with).'

The thesis is not about to suggest that we should or even could completely replace

humans with computers. Instead we should make computers do as many tasks currently

done by humans as we can. One focus of the System Generation Software is automating the

tasks that can be performed by a computer. The benefit of automation is to give more time

to the operator or user so they can do their primary task of testing the system or using a

database.

A project adrid-iistrator is responsible for dividing up the work, assigning it to

individuals, monitoring progress of the work, and then ensuring the pieces are integrated

into a working product. An administrator should not have to manually create working

"1. Lecture notes by Richard Hamming for the course EC4000, "Future of Technology," at the Naval
Postgmduate School, Monterey, CA, 1993.

18

copies of code for program developers to use. Nor should an administrator be required to

manually keep track of all code needed for a particular version.

B. OVERALL DESIGN REQUIREMENTS

From a user's point of view there are three important requirements for any software.

They are ease of use, doing what you expect the program to do, and reliability. From the

point of view of a systems programmer or someone who must maintain the code, an added

requirement is well written code.

Ease of use is the important requirement for any software. Given a choice, if you have

to use a system that is not easy (or intuitive) to use then you will probably avoid that system.

If a system is hard to use, then you spend more time learning how to use that system thus

less time getting your job done. This is true for any job whether it be supervising, data entry,

data queries, software maintenance, or software improvement. With a system that is easy

to use, the more work the program can take from the supervisor, developer, or user, then

the more useful work they can perform.

C. FUNCTIONS OF A SYSTEM GENERATION MANAGEMENT TOOL2

Some repetition in our lives is inevitable. Every work day many people wake up, get

dressed, eat breakfast, drive their car to work, and so on. However, when we have to repeat

things on a computer, we create macros, aliases, or executable files to get the same work

done with less human effort. There is no reason to not apply this concept in every computer

application. In the world of computers, there are many examples of how a programmer can

make using the computer easier. Macros, aliases, and executable files are just a start,

graphic interfaces were made possible after the invention of the mouse. The absence of a

command line on Apple Computer products saves the user from remembering specific

commands and syntax which are a burden to users of UNIX.

2. Back ups were not listed as a function performed by system generation software since a back up

process or procedure should already be performed on a routine basis.

19

There is no reason to not automate as much of the software development and testing

process as possible. A system generation system should be able to create and manage

multiple versions of software. Managing versions includes the version name, who is

working on the version, who is authorized to modify the files, where the code is located,

and how to compile the code. I am not going to discuss personnel management or security

issues in the thesis so I will limit the discussion to managing the versions. When multiple

versions exist on a system which consists of multiple machines, there is the added

requirement to coordinate running the same version code on each machine.

With MDBS there are two things to manage. The first one is the contxoller-backend

configuration. The second one is controlling the version of the software being used.

The, controller-backend configuration is primarily a concern during system start-up.

Starting MDBS takes about 13 commands (approximately 450 characters) for the controller

and about 6 commands (approximately 450 characters) for each backend. As with most

computers, there is no allowance for typographical errors. It is unrealistic to expect anyone

to type all commands each time he runs the system with backends. The first step to reduce

the number of keystrokes needed to start the system is to group commands into shell

scripts3. However, since there are multiple combinations of backends to use for a particular

run, the number of possible shell scripts becomes enormous4 . If you want to erase an

existing database from the data and meta disks in preparation for loading a different

database or starting over, you have even more commands to type. There is added work of

navigation through directories and machines. To execute a command on each backend you

need to rsh or specify the full path name (e.g. /@db3/usr/work/mdbs/bin/zero devs 1). Other

complications include the fact that one process on each machine cannot be started until the

other five processes on that machine are executing properly. And one process on each

machine expects to hear from other processes on that machine within a specific time frame

3. similar to .BAT files on IBM compatible personal computers.
4, Using one controller and every combination of 1 to 8 backends, there are 255 possible backend

configurations.

20

or it will terminate. Developing software and queries for the system often results in frequent

system start-ups. When you use multiple backends, keeping track of the whole system

becomes a hinderance to anyone who concentrates on what he needs to do rather than to get

the system running. This suggests automation to start the MDBS to keep track of the

backend configuration.

Version control is needed while improving the software of any project. When a portion

of the system needs to be added, changed or improved then a decision must be made about

what will be modified. There should be one copy of the original code and another copy of

code that will be modified. This can be done in several different ways. Three methods are

presented for discussion: (1) make a back-up and modify the on-line version, (2) copy the

entire code for the system and modify the copy, and (3) copy a minimal subset of the entire

code and modify the copy (using as much of the original code as possible).

For discussion purposes, the first two are similar. By making an entire copy of the

system, you have just made it difficult to incorporate the change back into the original,

unless you plan on abandoning the original version and staying with the new version.

Methods (1) and (2) make sense if the system consists of only one segment of code being

modified or you are the only person working on the entire system and can keep track of all

changes. Now lets say that there is more than one segment of the code being modified. Will

you copy the entire system for each version and have multiple revised versions to merge

into one version for the final product? This method of providing copies of the entire code

for each version causes the amount of code on-line to be directly proportional to the number

of versions being modified. Some would argue that memory is cheap so we should not be

concerned about multiple copies; however, more important than memory is time. The more

copies of code one has to integrate, the longer it takes to integrate5 as a result, the overall

cost is higher.

5. Something we discovered the hard way when attempting to merge the code from version 7 with
VerE.6 of the MDBS.

21

Now consider the third approach. Say the original software is partitioned in some

manner such as a user-interface, common code, debugging code, system maintenance, and

backend code. If software from one partition is being worked on then only that partition of

files needs to be copied for someone (or a group of programmers) to modify. To test the

partition of the code under development, one compiles the partition of code being modified

using any include files and object code needed from the unmodified partitions. Then, if

needed, link the original code with any newly created object code. Once all the executable

file(s) affected by the modifications have been compiled, then the system is ready for

execution. By copying only the partition of code that is being modified, first you will still

have the original working version available, second you will not use as much disk space as

used by the second method, and third you will make the job of re-integrating modified code

into the original easier since you only have one partition to integrate for each version.

For the sake of discussion, let us say that one partition being modified is for the

backend and that no other partition depends upon it. To test the whole system you compile

the process just modified. Assuming there are multiple processes in the original system,

start the system using the executable code for the one process just compiled and the

executable code for the processes from the unmodified code.

Ideally, the System Generation Software can be designed to automatically select only

the portions of code needed for development and not replicate unneeded code from an

original version to a working version. To do this would require a complete dependency

graph of all files in the system and some means of knowing what files to copy for every

possible change to the system. This approach could be automated with considerable effort.

Two questions arise, "Is it worth the effort?" and "It there an easier way?"

An example from the MDBS system follows. On db3 was a working copy of the

multilingual database system6 . This version did not have an Object-Oriented interface and

there were three thesis students ready to implement one. The VerE.6 was protected so no

6. in directory /usr/work/cs4322/VerE.6

22

one would modify the code and a new directory7, was created with the same sub-directories

as VerE.6. After determining that none of the backend processes and only one of the six

controller processes8 would be affected, the entire code for that process was recursively

copied to the directory, /usr/work/mdbs/rich/CNTRL/TI. The files copied included source

code and make files for the Language Interface. To compile the system, the main make file

was modified to only compile the files needed for the language interface process. There

were eleven processes not affected by the modifications. So to test the system, the shell

script to run the system was modified to start the eleven processes from the previous

version and the one process compiled from the modified code.

Looking back, there was not need to copy the code from all language interfaces such

as relational, hierarchial, and network; however, the more time would have been needed to

further modify the make files to support copying only a portion of the language interface.

This raises the question which a supervisor should keep in mind, "What is the optimal

amount of code to copy for a new version?" If you copy the complete system code, then

you have a large amount of code to integrate back into the original system. If you copy the

minimal amount then you may end up using more time setting up the files and make files

than you could save by not having to integrate the modified code into the original system.

A supervisor must exercise "good" judgement in making this decision. As advanced as

computers are, they are not ready to make such decisions.

There are ways to assist a supervisor in making these decisions. Case tools and some

compiler packages generate dependency graphs automatically for files. The dependency

graph for files is not always visible to the user even though the system uses that information

to compile the files for a system. A less reliable source are the dependencies which exist in

a makefile either constructed manually for C files or automatically for some compilers.

7. /usr/wormdbs/rich,

S. dbli.out,. the language interface.

23

D. FUNCTIONS IMPLEMENTED FOR MDBS

The four functions performed by my system generation software management tool are

start-up, reconfiguration, distribution of code, and version creation. All the commands

needed to start the MDBS are performed automatically by running the system generation

software management tool program. To change the number or names of backends in a

system configuration, the system generation software can reconfigure which backends will

be used for the next start up of MDBS. When modifications are made to one or more

backend processes, the recompiled executable code must be copied or distributed to each

backend. And finally, after someone copies the applicable portions of code and modifies

the configuration header file as described in the source code comments (see Appendix E)

and modifies the makefiles as discussed earlier in this chapter, one can create a new version

of the MDBS software on the controller and set up each backend for the execution of

processes created by the new version.

E. THE ORGANIZATION OF MY SYSTEM CODE

To automate the start-up and some management of MDBS, I broke up the start up

commands and made them generic. Backend commands will work on any backend. On

each backend I put commands common to every version for the backend into the bin

directory. Since different versions are kept in different directories, I decided to include the

version name in the directory name on both the controller and the backend. On the backend,

the directory for the executable code must have the name be.<version name>. For

"example, be.greg contains the 6 processes and the run.be command which calls them. To

automate creation of the shell script which calls the 6 backend processes, I made a template

file which is edited by the system generation program to create the run.be file for a new

version. Once created, this file is copied to each backend.

The system generation software source code and use of shell scripts were designed to

follow good software engineering practices. These practices include thorough

documentation, modularity, a header file for constants, and the absence of global variables.

24

Flow diagrams can be found in Appendix D for the overall algorithm and three of the most

complex functions. A listing of the source code can be found in Appendix E. Sample shell

scripts called by the system generation software are listed in Appendix G.

F. A SUMMARY

As stated in the design requirements earlier in this chapter, a system generation

management tool should be easy to use, do what it is expected to do, be reliable, and follow

good programming principles. The software I have developed meets these requirements as

demonstrated by the ease of use by first time users, doing what the user expected it to do,

recovering from user errors often with specific error or warning messages, and setting the

example for good programming principles in its code, users' manual, and documentation.

Performance and ease of use of MDBS have improved since the system generation

management tool has been installed.

25

IV. USING THE SYSTEM GENERATION SOFTWARE

The system generation software can start up, reconfigure backends, distribute

processes when needed, and assist in the creation of new versions. A step by step

description of how to use the software is contained in Appendix B.

A. TO START MDBS

The system generation software has simplified the start-up process. To start MDBS,

all you type is begin. The system-generation program will look up the last MDBS

configuration used and display the configuration. After answering a few questions, most of

which only require 'y' or 'n' for a response, the system starts up in the configuration you

wanted.

B. TO RECONFIGURE THE BACKENDS

The number of backends can depend upon the size of a database you plan on running

or the testing you want to perform. Changing which backends to include in the next run of

MDBS is fairly simple. After typing begin or begin -r, the system generation software will

display on the screen the current version name, controller, and backends in the

configuration. To change the configuration, answer 'y' to the question "Do you want to

reconfigure the Back Ends? (y/n)". For each available backend, you will answer 'y'

or 'n' indicating which backends you want in the new configuration. After you have

responded to each backend and are satisfied with the new configuration, it is saved in the

configuration file. If you do not choose any backends, then system generation program will

reread the configuration file and use the previous configuration.

C. FOR CONFIGURATION MANAGEMENT

After modifying code in MDBS which affects any backend process, you need to

recompile the affected code and copy the resulting executable files to each backend. Start

the system generation management program by typing 'begin -d'. The program will ask if

you need to recompile the backend code. If you need to recompile, it will initiate the

26

compilingI and then copy the compiled code to each backend. As long as you have created

the applicable directory on each backend (or previously used the system generation

software to create them) then all the backend executable code will get copied to the

directory on each backend corresponding to the current version name.

D. FOR VERSION CONTROL

Creating a new version involves a fair amount of planning. Someone will copy the

applicable portions of code in the MDBS hierarchy into new directories containing the

name of the new version to be worked on. Then he modifies, as necessary, the make files

to reflect the directory structure. The system generation and software management tool

program is started with 'begin -v' option. System generation program will ask for the new

version name. After you enter and confirm the new version name, the program will change

the version name in the configuration file. My system generation program will verify that

the include file was updated to reflect the current version name as the default version name.

The the system generation program will verify that the new version name can be found in

the current directory.

1. Compiling should be done before running the system generation software management tool pro-
gram since you will be unable to verify the compilation was successful before the program copies
code to the backends. If compilation was unsuccessful, you will have to exit this program to fix any
error then recompile.

27

V. AREAS FOR FURTHER STUDY WITH THE MDBS

The purpose of MDBS is to demonstrate to academia, business, and government that

building a database computer which is multilingual and scalable (with multibackends) is

not only possible, but a practical solution to the problem of data sharing between

heterogeneous databases. As with any research project, there are many ways that project

can be improved. In this chapter I have listed a few areas of improvement and directions

for further research. The topics are listed in their order of importance as I see them.

A. UPGRADING EQUIPMENT

As time passes, computer technology improves. The current MDBS is implemented

on Integrated Solutions, Inc. Optimal V24 model. These machines, commonly referred to

as ISIV's, were purchased during the early 1980's. As discussed in Chapter I, the speed of

a central processor has increased several times and disk drives capacity has increased at

least 10 times since the early 1980's. Advances in technology and time have a cost.

Machines become out of date. Machines also wear out and the hardware requires more

frequent repairs. There comes a time when the repair costs exceed replacement costs. The

MDBS will be getting SUN workstations to replace the ISIV's. Anyone who has upgraded

equipment, even for "upward compatible" computers, knows that one cannot just copy the

files and recompile. Every once in a while you might get lucky and not have to debug, but

more often than not there will be differences between machines which will require

debugging the system.

One complication with multiple hardware configurations is how to handle future

upgrades to MDBS. If software development is shifted completely to dbl 1 as controller

with dbl2 and dbl3 as backends, how will any improvements be transferred to the two

machines on loan?1 Any future changes can not be distributed by making tape backups and

sending them via mail to be loaded on dbl and db2. Since there are differences between the

.dbl and db2 at Pt Mugu and SUPSHIPS San Francisco.

28

new and old hardwares, the changes will have to be duplicated and tested on db3, db4, or

db7 (with the same ISIV architecture), then copied to tape before sending to dbl and db2.

This process has a fair amount of overhead.

B. INTEGRATING THE TWO MAIN VERSIONS

There are two versions of the Multilingual Multimodel Database System at the Naval

Postgraduate School (NPS). One version2 uses the same machine, db3, as the controller and

the backend. This version implements the five language interfaces discussed in Chapter II.

The second version uses one machine as the controller and one or more machines as

backends. The second version works reliably for the attribute based data model and

sporadically for the other data models.

The Object-Oriented Database Model has been added to the version on db3. Since that

version supports multilingual, not multibackend parallel database operations, the Object-

Oriented code should be integrated into the multibackend version on db8. The other

language interfaces must also be examined. The multibackend version on db8 has a

significant amount of multilingual code. Since the db8 version does not work consistently

with the languages implemented, the multilingual code should be compared with the db3

multilingual code with functions consistently. Improvements to the db8 code should be

made so there is at least one reliable multilingual and multibackend system.

C. IMPROVING EXISTING MODULES

The Daplex, or functional, database language does not work on MDBS. Much effort

was put into this project; however, the task has not been completed. Work on the functional

data model has resumed. The functional model can be used with artificial intelligence

applications. Having a functioning functional database model would be an asset to the

MDBS.

2. VerE.6 in the cs4322 account on db3.
3. greg in the mdbs account on db8.

29

The Object Oriented Data Model as implemented on MDBS resembles the Relational

model too closely. More work on the OODM must be done to make it truly object oriented.

It currently has limited inheritance implemented. Implementing full inheritance and the

covering property are under development.

D. THE USER INTERFACE

Many systems exist with a menu driven user interface. Menu driven displays are

adequate for some purposes, but when they call for non multiple choice answers, the user

may need additional information displayed on the screen, possibly in a different window.

Anyone who has used Windows on a personal computer, or X Windows on a workstation

can admit that their productivity increases when they have the ability to access references

and get helpful information in other windows while they are doing their main work in

another window.

Pop up windows also make the windows environment more user friendly since

information can be seen when you need it. When you no longer need the information, you

can remove the window, or the system can be program-tmed to remove the window.

On the older ISIV equipment, there is a primitive windows environment available, but

the MDBS software does not automatically utilize any window features. The user has to

explicitly open windows that he needs. Having multiple windows is very useful when

running MDBS. At start up and any timt during system operation, a user can find out if the

multiple processes are running. Multiple windows can be used to find the exact names for

databases, query files, template files, and other files. Even these uses of multiple windows

require the user to have some knowledge of the system. One improvement would be to

display the valid choices in a window instead of relying on the user to remember the exact

file name, database name, or even the full path name of the file. Another improvement

would be to have a separate process which monitors the main processes and lets the user

know all is well and what died if all is not well with the multiple system processes. This

can be accomplished by X Windows on workstations using the UNIX operating system. A

30

recent graduate from the Naval Postgraduate School wrote a windows environment

interface for MDBS. This interface was written using transportable applications

environment (TAE)4 Plus and could be used as a template to start such an interface.

E. IMPLEMENTATION OF MORE CROSS-MODEL ACCESS

As displayed in Figure 1, there are only two cross-model database mappings

implemented, Load using Hierarchial (DL/I), Query with Relational data language and

Load using Object Oriented Data Language, Query with Relational Data Language.

Studying and implementing more cross-model accessing can make MDBS harder to

overlook when academia, business, and government attempt to solve the growing problem

of heterogeneous databases.

F. REDISTRIBUTION OF DATA IN AN EXISTING DATABASE

A commercial system with multiple backends must be capable of error recovery. If

one backend fails then the system should be able to be reconfigured automatically or with

minimal human intervention. One database application is a bank. A database for a bank

cannot be interrupted due to a failure of one backend for hours or days while the data (on

the backends) is reconstructed. To solve this type of problem on MDBS, three major areas

must be addressed, duplication of base data on backends, and redistribution of the base

data, and database integrity.

When MDBS data is stored on multiple backends, the data is partitioned. When the

number of backends changes, the partitioning also changes. Some system monitoring

software should be able to either copy the back up data for the backend which failed and

copy it to a backend not in use5 or to back-up (store) all existing data on a common device

(e.g. magnetic tape, multiple disk drives) and then reload the database on the new

configuration. On MDBS this could be done by storing each data partition on at least two

4. TAE is a registered trademark of the National Aeronautics & Space Administration.
5. To keep the same database partitioning which would maintained by haviru the same number of
backends in the new configuration.

31

backends and having one or more backends as ready spares which a monitoring system

could use if a backend in use fails. Database integrity is discussed in (Quantock, 1989).

G. UPGRADING EXISTING CODE FROM C TO C++

Some people say that the writing is on the wall for C code. C++ is an Object-oriented

language and can do much more than C could. Object-oriented databases should be

implemented as part of a multilingual, multimodel database system. Future code for the

multilingual, multimodel database system should be written in a higher level language than

C, namely C++.

H. MULTIPLE USER AND MULTIPLE DATABASE

MDBS is a research database computer and does not have everything that is expected

of a commercial database. An area of development not being worked on is allowing MDBS

to have multiple users and multiple databases loaded simultaneously. A commercial

database system must be able to handle multiple users simultaneously and should be able

to handle multiple databases concurrently.

32

VI. PROBLEMS

MDBS is not a commercial product. It has been worked on mostly by students earning

their masters degree in computer science at the Naval Postgraduate School. Since MDBS

is not meant to be commercial strength, there is less emphasis placed on the optimal user

interface, sufficient source code comments, or on error recovery and more upon showing

that something new can be done with the system. Each language interface implements a

subset of the commands for that language. The first language interface mapping was from

relational (SQL) to the attribute based data language and model. This was the best written

and documented schema transformation and query translation. The subsequent language

interfaces were based on the design used by the relational model and language. Although

there have been several paid systems programmers to get the multibackend system running

and occasionally to make it better, there are currently no paid staff responsible for MDBS.

Unfortunately, the system stops unexpectedly. Some reasons for the system to stop are data

entry error1, a software error, and a hardware failure.

A. RETRIEVE - COMMON

The keinel data language uses the retrieve common command to perform a join on

attribute-value pairs (similar to equi-join in the relational model). During the retrieve

common process, back-ends must communicate with each other. The inter process (IP)

buffer has a size of 1000 characters. Messages sent between processes can have up to 1425

characters. The operating system uses a flushing mechanism for messages longer than 1000

characters. Some indications are that this mechanism is not given enough time to complete

the flushing task before the arrival of the rest of the message or the arrival of the next

message. As a result, the messages are damaged. The damaged messages causes errors

when calculating virtual addresses for the data (Hammond, 1992, p.42). It was proposed

1. Made by the database ust.r 'i i. a corresponding lack of error recovery built into the source code
by a programmer.

33

that an upgrade of the operating system2 might solve these problems. This remains to be

seen as the system is being ported over to the more powerful workstations.

A second problem with retrieve common is a result of backends having to

communicate amongst one another. For commands other than retrieve common, backends

only communicate with the front end. The front end will either broadcast a message to one

or to all backends. In response each backend will send one or more messages to the front

end. If there are several retrieve commons being performed, or if one retrieve common has

a large set of data to join, the amount of inter-backend communications increases. This

increased traffic on the ethernet causes the number of collisions to increase. As a result,

inter-machine communications are slowed down. This delay is severe enough that during

the bench marking, the retrieve common was not included in the commands tested (Hsiao,

1991, p. 54). This communications related problem may be solved by using a protocol

similar to the token ring protocol. Using a fiber distributed data interface (FDDI) would

solve the communications bottleneck two ways. First, the data rate is much higher than the

ethernet (10 vs. 100 Mega bits per second) 3. Second, the protocol does not permit

collisions.

B. SOFT WARE RELIABILITY

Since there is not error recovery, the system locks up at unexpected times. You can be

using a "perfectly" coded language interface and the system can still crash or lock up. There

are many possible problems. One problem could be due to the design of the Ethernet

(broadcasting messages can collide and not be detected). If a message gets lost, the

controller can wait indefinitely expecting a message which will never be received. If the

backend sent the message, then it will not send it again. This problem could also be due to

2. The ISIV's were installed with ISI 4.2 Berkeley Software Distribution (BSD) Release 3.07. The
operating system was upgraded to 4.3 BSD Virtual VAX 11 Version 490145 Rev B dated October
1987. When the movement to Sun Workstations is completed, MDBS will be using UNIX Sun OS
4.1.1.
3. If messages can not be sent to multiple recipients then a network of 10 backends would only ben-
efit from the lack of collisions, not from the higher data rate.

34

how sockets are handled by the operating system (BSD 4.3) as discusses in the previous

section.

MDBS is meant to show that a multimodel, multilingual, multibackend database

system can be implemented. Once government and industry realize the strengths of both

the multilingual and multibackend, then the idea could spread to a commercial strength

product which would better handle data entry errors and remove most--if not all--software

errors.

35

VII. CONCLUSIONS

As more demands are placed on computing resources, it is vital that database systems

be designed which get the most out of each computing dollar. Heterogeneous databases

exist in most large organizations. Their existence causes a lack of effective data sharing,

duplication of data, and wasted computing resources. One way to solve these problems is

to use a kernel data model and language to store all databases. Users can view, load, and

modify a database in whatever data model and language they would like to use. The

Multilingual, Multimodel, Multibackend Database Supercomputer located at the Naval

Postgraduate School has demonstrated the feasibility of such a system.

A. WHAT I HAVE ACCOMPLISHED

Running multi-process systems is hard enough on multiple machines, but adding

multiple versions on top of this becomes a difficult task. The more we can automate, the

less a supervisor, software developer, or user will have to know or do to run the system.

There is a definite need for automation where ever possible. Human beings do not need to

waste time remembering exact command names and machine specific peculiarities.

Innovative ideas in the computer industry have continued to increase productivity of

computers and users. Other ideas which have improved the user interface and thus

productivity are icons, pull down menu's, and a consistent use of color. The lack of a

command line, although intimidating to more experienced command line users, shifts the

burden of remembering correct commands from the user to writing a better interface to the

programmer of that interface.

After using the MDBS I realized its merits and its possibilities for solutions to real

world problems. I also realized that the learning curve to use the system is long and steep.

One of my goals is to make the MDBS easier to learn and easier to use. With the code I

have written (see Appendix E), I have automated running MDBS. Getting the system to run

does not solve all the problems. Knowing how the system operates is also important in

easing the learning curve.

36

Documentation is very important and cannot be stressed enough. The lack of

comments today in a program that you know inside and out will become a huge barrier for

anyone--including yourself--from looking at that code in the future and being able to

quickly understand not only what it does, but how the program does it! I have thoroughly

documented my code and have gathered information to explain the overall setup of the file

system which supports MDBS. Within that I have described many of the temporary and

permanent files that make MDBS operate. Together with the User's Manual (Appendix A

to Bourgeois 1993), which explained how to use the multilingual aspect of MDBS, it is now

much easier for someone new to learn the MDBS from a database user's perspective and

from a systems programmers viewpoint.

B. SOME FUTURE AREAS OF RESEARCH RELATED TO THIS WORK

Areas for possible future research are discussed in the previous chapter. The areas

which need to be worked on are the upgrading of equipment, improving the reliability of

the software, object oriented interface, and more cross-model accessing capability.

Upgrading of equipment to Sun4 workstations is in progress which may improve the

reliability of existing software. A full-time staff or contractor needs to work on, test, and

improve the performance of the multibackend version of MDBS1 to at least the

performance of the single backend version of MDBS2.

The object oriented interface needs to be less relational and more object-oriented. The

interface needs to be integrated into the multibackend version of MDBS which will be done

once the system is ported to the Sun4 workstations.

And finally the cross-model accessing capability. I believe this is the greatest strength

of MDBS. If academia, 'business, and government would see the benefits of a Federated

Database System using a kernel data model and language, there could be great steps toward

data sharing and the eventual reduction in the number and sizes of databases in the world

1" The current version name is 'greg' which is an improvement on version '7'.
2. Implemented on db3 as 'VerE.6'.

37

today given a constant amount of information to store. This reduction would result in a

tremendous savings in the cost of maintaining existing databases.

38

APPENDIX A. FILE ORGANIZATION OF MDBS

This appendix presents an overview of the directory structure and important files used

to operate MDBS. First we review the basic hierarchy of the DATABASE software files

starting at the Version's Directory which is maintained on the controller (currently ISIV8).

/u/mdbs/

Sockets/ Version_Name• UserFiles/

BE/ COMMON/ CNTRL/ bin/ run/

BCOM/ TI! CCOM/
CC! COMMON/
COMMON/ HG/
DIO/ PP/
DM/ Object! LangIF/ REQP/
RECP/

I I
Object/ Object/

include/ lib/ src/

Cornap A

Dli/ Kc/
Dm1/ Kfs/
Obj/ !Is/
Sql/ Lil/

Figure 7. Directory Structure of the MDBS files on the controller

39

A. CONTROLLER

BE: Directory containing:

the following 6 sub-directories which create the 6 Back End Processes:1

COMMON: source files common to all Back End processes.

CC: Concurrency Control.

DIO: Data Disk Input/Output

DM: Directory (meta disk) Management - where records are put.

RECP: Record Processing.

BCOM: Back End Communications - Machine to machine.

the executable code for each process (bget, bput, cc, dio, dirman, recp).exe2

CNTRL: Directory containing:

the following 6 sub-directories which create the 6 Controller Processes: 3

COMMON: source files common to all Controller processes.

CCOM: Control Communications - cget and cput processes.

RECP: Request Preparation - ABDL Parser

PP: Post Processing -

IIG: Insert Information Generation - determine in what track to put a record

TI: Test (user) Interface - source and libraries for each non kernel Data

Manipulation Language except ABDL

the executable code for each process (cget, cput, iig, pp, reqp, ti).exe4

SEach has its own Object/ directory used during the compilation process for include and object
files.
2. The .exe extension is used to differentiate this version from the cs4322 version which uses the

.out extension.
3 .See footnote 1.
4- See footnote 2.

40

COMMON: Directory containing:

source common to Back End and Controller

bin: Directory containing:

shell scripts, binaries, and makefile used to copy or move files and data, view data and

meta data, and compile any and all parts of the system.

constants - display meta table sizes (source in VersionNarne/BE/DM)

cpcount - copy a file for a given number of bytes. Use to copy meta and data disks to

other BE (source in VersionName/BE/DIO)

cpydisks - script using cpcount, NOT to be used on CONTROLLER

cpytobe - copy BE processes to backend (not used)

disp - display dynamic meta table (source in VersionName/BE/DM)

gdb - generate test database of arbitrary size from template file (usage: gdb D.t

D[.r])(source in Version_Name/CNTRL/TI)

makeall - shell script which calls make in the appropriate directory for each of the 12

processes

makefile - can be called with 4 options. make all - calls makeall; make auto - compiles

main.c; make clean - deletes all object files; make dist - creates a tar'd,

compressed backup file of the distribution.

rectag - print out formatted data from data disk (source in VersionName/BE/DIO)

zero - writes O's to a file; used to erase meta and data disks before loading a new

database (source in VersionName/BE/DIO)

configure.h - include file for main.c

main.c - source for automatic reconfiguration, redistribution, and execution of MDBS

41

run: Directory for:

files (1) created by the controller during execution of MDBS storing information

about the database and (2) needed to start and restart MDBS.

.Syntax -

.TransFile -

.config.db - version name and list of backend names in current configuration. Used by

main (specifically from VersionName/bin/main.c program).

.currfile - temporary file used by some language interfaces

.exe.awk - pattern matching for awk command in stop.<controller> (e.g. stop.db8)

.output - last query result displayed to the screen.

.qryfile - the last displayed create/query (SQL) or dbd/request (DL/I) file.

trace/ - directory for trace files from the 5 controller processes

<process name>.tr - trace for most recent execution of that process

database list files: - (.dap.dbl, .hie.dbl, .net.dbl, .obj.dbl, .sql.dbl) one file for each

language, one database name per line. These files are created each time MDBS is run. Each

file is created from its respective .*dbs.dat files.

database data: - (.dapdbs.dat, .hiedbs.dat, .netdbs.dat, .reldbs.dat) one file for each

language, a listing of all information needed to create a database catalog (.*.cat) file for

each known database. These files are updated when a database schema is added via creation

or translation/transformation from another schema.

database catalogs: - (.DTH.cat, .DTH2cat, etc.) one fie for each database listed in

each .*.dbl file. Information is created at run time (probably when the specified language

interface is requested; could be at start of ti.c) by reading the corresponding .dat file.

shell scrips: all called by Version_Name/bin/main.c

start.cntrl - start the first 5 of 6 controller processes

master.run.be -a template used to create run.be for a new version of software

run.be - latest run.be created from master.run.be

stop.<machinename> - stop processes remaining from last run of database

42

zero.<backendname> - erase data from back end meta and data disks

zero.<controller_name> - erase files storing data of previous database

/CNTRLfrI/LanglF - Test Interface, Language Interface

include: files included in .c files at compile time (e.g. .dcl, .ext, .h, .def)

lib: archived files. One per Data Language (sql.a, dli.a, dml.a, dap.a obj.a).

src: source code for each data manipulation language (DML). Sub directories are:

Corn: three files used by each data language.

Sql: Relational Data Language (SQL) -

Dli: Hierarchial Data Language -

Dm1: Network Data Language -

Dap: Daplex Data Language -

Obj: Object Oriented Data Language -

Each Data Language has up to 5 sub directories:

Alloc: Allocation of memory for various data structures.

Kc: Kernel control - communicates between ABDL, Kms, and Kfs.

Kfs: Kernel formatting system - collects and formats data from Kc for

display in Lil

Kms: Kernel mapping system - parse queries generated by Lil. Sends

to Kc.

Lil: Language Interface Level - menus for user. Communicates with

Kms, Kc, and Kfs.

43

The following directories and files must be present on the CONTROLLER within

$HOME or the login directory:

Version-Name/ described above. As a minimum, you need the 6 executable files for

the controller processes and all of the run directory to start the system.

UserFiles/ formats of files are described in the User's Manual, chapter IX (Bourgeois,

1993, pp. 84-88).

DB_NAME.d - descriptor file. Places restrictions on values and ranges of

values of attributes. Used in clustering.

DBNAME.r - mass load file. For Relational and Attribute Based Models.

DB_NAME.t - template file. Structures of the attribute-based database.

DB_NAME#n - ABDL query list. Also known as Traffic Unit.

DBNAME<sql, dml, dli, obj, dap>db - schema file - needed by system to

create a new database unless you do it interactively. This file contains

enough information to generate the descriptor and template files

OTHER - files such as DBNAMEsqlreq create table and SQL select

Sockets/ 11 connections between Backend and Controller

CC=

DM=

IIG=

P_PCLB=

RECP=

TI=

DIO=

G_PCLC=

PP=

P_PCLC=

REQP=

44

.<each control executable in CNTRL/>.pid - (not used) process ID of last run of that

process

.alias - aliases to facilitate navigation in the directory structure as well as the begin

MDBS alias which must be updated if the current version is moved or renamed. At the time

of this writing, begin is defined as: alias begin 'cd /u/mdbs/greg/run; main'.

.cshrc

.login

45

B. BACK END

The second part of the file sructure of Multibackend Database Supercomputer

(MDBS) to be described is the back end file structure. Again starting with the directory

structure of each back end, see Figure 8.

/usr/work/mdbs

Sockets/ Userfiles/ be.VersionName/ bin/

Figure 8. Directory Structure on Backend Machines

EACH Back end has the following files and directories:

/usr/work/mdbs - login directory containing:

.(bget, bput, cc, dio, dirman, recp).pid - process IDs for last run (not used)

be.Version/ -- one directory per version

- 6 process executable file names (bget, bput, cc, dio, dirman, recp).exe

6 process_name.tr files for stdout and stderr while running

run.be*

UserFiles/ - copies or links to files with the same name as in UserFiles/ on the

controller. Both files must exist on every back end for every database used on the system.

DB_NAME.r

DBNAME.t

bin/ - copies of files or Fnks to files in VersionName/bin may be included. The

following must exist for the automatic reconfiguration and start-up program to work

stop.cmd - from VersionName/bin

exe.awk - from VersionName/run

zero - from VersionName/bin

46

Sockets/ - 6 connections between Backend and Controller

CC=

DIO=-

DM=

GPCLB=

P_PCLB=

RECP-

47

APPENDIX B. HOW TO START AND RECONFIGURE MDBS

The following is a description of what you need to do to start and run the Multi-
backend Database Supercomputer (MDBS) as automated by my program.

Initial Conditions:

Login as mdbs to the controller, currently db8, open one window or use the console
for the controller to run MDBS. To monitor the processes and check the meta and data
disks, you should rxterm or create another window again to the controller and once for
each of the Back Ends you plan to use. This can be done by being logged in to each of
the applicable consoles and/or have multiple windows open on your terminal, one for
each back end and two for the controller.

A. TO START MDBS

At the UNIX prompt on the controller type:

start or begin

When you do this you are changed to directory greg/run and the program configure
begins execution. If the start or begin aliases have not been updated at the last version
change, then an error message will be displayed stating that the version name"<name>" from .config.db is not in current path. If this message occurs, either change
the alias or manually cd <Versionname>/run; main.
The following will be displayed once the configure program starts execution

Welcome to MDBS, today is Fri Feb 19 12:54:05 PST 1993

Check the time each file was last compiled:

-rwxrwxr-x 1 mdbs 83649 Nov 5 12:58 .. /BE/bget.exe
-rwxrwxr-x 1 mdbs 83649 Nov 5 12:58 .. /BE/bput.exe
-rwxrwxr-x 1 mdbs 246357 Nov 5 12:57 .. /BE/cc.exe
-rwxrwxr-x 1 mdbs 89208 Nov 5 12:57 .. /BE/dio.exe
-rwxrwxr-x 1 mdbs 375581 Nov 5 12:58 .. /BE/dirman.exe
-rwxrwxr-x 1 mdbs 335559 Nov 5 12:59 . /BE/recp.exe

-rwxrwxr-x 1 mdbs 91811 Nov 5 12:52 .. /CNTRL/cget.exe
-rwxrwxr-x 1 mdbs 91811 Nov 5 12:52 .. /CNTRL/cput.exe
-rwxrwxr-x 1 mdbs 56680 Nov 5 12:52 .. /CNTRL/iig.exe
-rwxrwxr-x 1 mdbs 56971 Nov 5 12:53 .. /CNTRL/pp.exe
-rwxrwxr-x 1 mdbs 84382 Nov 5 12:53 .. /CNTRL/reqp.exe
-rwxrwxr-x 1 mdbs 488244 Nov 5 12:56 .. /CNTRL/ti.exe

There should be 12 files listed, if not you need to recompile

Do you need to recompile any executable and/or copy the 6
executable files to each Back End

(bget, bput, cc, dio, dirman, recp.exe)? (y/n)

48

Most of the time you will enter n to this question.

Next you will be shown the name of the current version, which machine is the controller
and which are the back ends.

The Current Configuration is:

Version Name: greg

Controller: db8

3 Back Ends:
db3
db4
db7

WARNING: All data will be lost if you reconfigure

Do you wish to reconfigure the Back Ends? (y/n)

Normally you would enter n so that you will use the same back end configuration.
Reconfiguring is discussed in the next section.

If you do not reconfigure, then you will be asked if you want to use the last data base
loaded on the system. Unless you know which database was used last and you want to
use that database, enter n. If you answer y, all data and meta data will be erased.

Do you wish to use current database? (y/n)

If you enter n, the following will be displayed for each back end:

Zeroing backend meta disk on back end, db4...
File to-zero = /dev/sdlc
File size = 105638400
Bytes to zero = 1000000
Bytes written...

819200
1000000

Zeroing backend data disk on back end, db4...
File to zero = /dev/sm0c
File size = 418775040
Bytes to zero = 100000
Bytes written...

100000

Then for the controller, the following will appear with a possible "No match" or two.

Removing CINBT and IIG AT tables on controller, db8...
Removing sql, hie, and catalog files

Now that the configuration is determined, you are given the opportunity to not run
MDBS. This option is here in case someone wants to reconfigure, stop unwanted jobs,
recompile code, or copy code to back ends without actually running MDBS.

49

Do you wish to run the Multi Model, Multi Lingual,
Multi Backended Database System? (y/n)

Entering n will exit you from this program and return you to the UNIX shell. Entering
y will cause the following steps to occur:

Configure will check the file .config.db to see the last combination of backends. Any
process running on the controller or backend will be terminated (with the shell scripts
named: stop.<machine name>). For the configuration in this example and no duplicate
processes still running, the following will be displayed.

stopping processes on back end db3
no processes to kill on db3
stopping processes on back end db4
no processes to kill on db4
stopping processes on back end db7
no processes to kill on db7
stopping processes on db8, the controller
no processes to kill on db8

Then 5 of the 6 processes on the controller are started in the background.

starting 5 of 6 controller processes on db8...

[1] 2510
[2] 2511
[3] 2512
[4] 2513
[5] 2514-

For each back end, six processes are started.

Running backend on db3...
[(] 1358
[2] 1359
[3] 1360
[4) 1361
[5) 1362
[6] 1363
Running backend on db4...
[(] 2302
[2] 2303
[3] 2304
[4] 2305
[5] 2306
(6] 2307
Running backend on db7...
[1] 808
(2] 809
[3] 810
[4] 811
[5] 812
(6] 813

50

At this point, the user interface begins.

Note that the 6th process on the controller, ti.exe, does not start right away. It must
communicate with the other 5 processes and usually dies if any of the other processes
are not ready to communicate via the Sockets.

You can verify using each window (or terminal as applicable, described above in the

initial conditions) that all 6 processes are running on each back end.

For each Back End type:

When you are logged in (or rlogin) to that machine: ps or ps I grep exe
When you have a window on another machine then: rsh <Back End Name> ps

To verify the 6 processes are running on the controller type:

ps or ps I grep exe

If any process is not running on any machine in the current configuration, then you must
exit the main program on the controller by typing 'x' at the first prompt. Otherwise,
continue to run MDBS in accordance with the User's Manual which can be found in
(Bourgeois, 1993).

51

B. TO RECONFIGURE MDBS

Initial Conditions are described at the beginning of this Appendix.

At the UNIX prompt on the controller type:

start -c or begin -c

Follow the instructions for To START MDBS. If you forget the -c then answer y to the
following WARNING and question.

WARNING: All data will be lost if you reconfigure

Do you wish to reconfigure the Back Ends? (y/n)

Enter y to each backend that you want in the new configuration. Once you confirm
your choice, the .config.db file will be updated and each machine in the new
configuration will be zeroed for loading a new database.
Indicate which Back Ends you want in the configuration

by responding y/n as each Back End is listed:

db3 ? y

db4 ? n

db6 ? n

db7 ? y

db9 ? n

The Current Configuration is:

Version Name: greg

Controller: db8

2 Back Ends:
db3
db7

Is this configuration satisfactory? (y/n)

Once you confirm your choice with a y, the .config.db file will be updated and each
machine in the new configuration will be zeroed for loading a new database. A sample
zero for one back end and for the controller is shown in the previous section, To
START MDBS. After zeroing is complete, you will be given the option to continue or
exit MDBS.

Do you wish to run the Multi Model, Multi Lingual,
Multi Backended Database System? (y/n)

Enter y to start up the system with the new configuration. For a description of what
happens next, refer to the previous section, To START MDBS.

52

C. TO DISTRIBUTE BACKEND EXECUTABLE CODE

Initial Conditions:
- The same as described at the beginning of this appendix, plus
- you are in the directory for the current version since the code will be copied to the
directory corresponding to the current version on each back end.

To tell the configure program that you want to distribute executable back end code to a
new or existing back end. At the UNIX prompt enter:

start -d or begin -d

If you forget to use the -d option, you can answer y to the first question as described
above in START MDBS.

Welcome to MDBS, today is Fri Feb 19 14:48:48 PST 1993

Check the time each file was last compiled:

-rwxrwxr-x 1 mdbs 83649 Nov 5 12:58 .. /BE/bget.exe
-rwxrwxr-x 1 mdbs 83649 Nov 5 12:58 .. /BE/bput.exe
-rwxrwxr-x 1 mdbs 246357 Nov 5 12:57 .. /BE/cc.exe
-rwxrwxr-x 1 mdbs 89208 Nov 5 12:57 .. /BE/dio.exe
-rwxrwxr-x 1 mdbs 375581 Nov 5 12:58 .. /BE/dirman.exe
-rwxrwxr-x 1 mdbs 335559 Nov 5 12:59 .. /BE/recp.exe

-rwxrwxr-x I mdbs 91811 Nov 5 12:52 .. /CNTRL/cget.exe
-rwxrwxr-x 1 mdbs 91811 Nov 5 12:52 .. /CNTRL/cput.exe
-rwxrwxr-x I mdbs 56680 Nov 5 12:52 .. /CNTRL/iig.exe
-rwxrwxr-x I mdbs 56971 Nov 5 12:53 .. /CNTRL/pp.exe
-rwxrwxr-x 1 mdbs 84382 Nov 5 12:53 .. /CNTRL/reqp.exe
-rwxrwxr-x 1 mdbs 488244 Nov 5 12:56 .. /CNTRL/ti.exe

There should be 12 files listed, if not you need to recompile.

Do you need to •ecompilc before copying to the back ends? (y/n)

If the code has not been modified since the last compilation, then enter n. Entering y
will execute a 'make all' on the system which may take several minutes to complete. It
is much safer to execute 'make all' from outside of this program so that you can verify
the compilation was successful before copying any code to the back ends, as described
in Appendix F.

After all 6 BE processes are copied to every back end defined in the file, configure.h.,
the configuration is displayed and you are asked if you want to reconfigure.

53

The Current Configuration is:

Version Name: greg

Controller: db8

3 Back Ends:
db3
db4
db7

WARNING: All data will be lost if you reconfigure

Do you wish to reconfigure the Back Ends? (y/n)

From here on refer to the previous section, TO START MDBS.

54

D. TO CHANGE VERSIONS

note: disk space is limited on almost any system. Also the more versions in existence,
the harder it is to integrate changes on older versions into the newer version(s).
Minimize the number of copies and versions of code.

Initial Conditions:
- The same as described ii1 To START MDBS plus
- Replication ofthe entire controller directory tree has been completed from an

existing version."

After changing the following alias so that it changes directory3 to the new version, at
the UNIX prompt on the controller, type:

start -v or begin -v

This will display similar information as described above in To START MDBS except
the first prompt will be asking you to confirm that you want to change the version.

The Current Configuration is:

Version Name: greg

Controller: db8

3 Back Ends:
db3
db4
db7

WARNING: (1) changing the version should only be done for major changes.
-(2) Please consult Dr. Hsiao or all project members first.
(3) This program MUST be run from the new version directory

e.g. from directory /u/mdbs/VERSION/run.

pwd == /u/mdbs/greg/run

Do you still want to change the current version? (y/n)

I. Note that a partial copy of the code can be made as long as the associated makefile(s) for that
copy are modified to find the files from another version that were not copied or modified. When
developing the Object-Oriented Data Language Interface, only the CNTRL/LangIF directory was
copied on db3 to the rich directory. The controller process ti.out was the only process of twelve to
be modified. The other eleven processes from cs4322/VerE.6 were used by simply modifying the
run command in mdbs/rich/run directory
2. For example, if you wanted to copy the entire version 7 from db4, you could execute the follow-
ing command from the login directory of the (new) controller.-

cp -r /@db4/u/mdbs/7 NEWVERSION
, The configure program will check the present working directory for the new version

name, if it is not present, the program will display an error message and stop.

55

If you enter y, you will be asked to enter and verify the name of the new version

Enter the new version name: greg

Please verify the new version name to be: greg

Is this correct? (y/n) (q/Q to Quit) y

You can exit the version change process by entering q or Q. You can enter n to re-enter
the new version name. When you entr y, you will be asked if the Back End directory
be.NEWVERSION has been set up.4

pwd includes new version, updating .config.db

Have Back Ends been set up for this version? (y/n)

After answering y or n, the current configuration is displayed with the updated Version
name.

The Current Configuration is:

Version Name: thesis

Controller: db8

3 Back Ends:
db3
db4
db7

WARNING: All data will be lost if you reconfigure

Do you wish to reconfigure the Back Ends? (y/n)

From this point on, this program continues as previously described in To START
MDBS.

WARNING: If you did not run the configure program from the directory of the new
version, then this program will terminate with an Error message and instructions telling
you what needs to be done to continue.

4. Set-up includes creating the directory be.VERSION, creating a new run.be file for the VER-
SION, copying the new run.be to be.VERSION, and copying the executable code for the 6 Back
End processes to be.VERSION.

56

E. TO LOAD MDBS ON A NEW MACHINE

Initial Conditions:
- mdbs account exists in /usr/work/mdbs directory.
- the current mdbs machines and account can access the new machine via "rcp dbn:/"

where n is the number of the new machine.
- configure.h has been updated to include the new machine as either a back&end[] or as

the controller and main.c which includes this Pile has been recompiled
- the CPU and operating system are identical

As a (2ONTROLLER
Copy' the entire directory tree7 which is described in Appendix A

Look at pcl.def file which lists two socket addresses and the controller name used by
mdbs..

As a BACK END
mkdir /u/mdbs/bin and copy from another back end:

stop.cmd, awk.exe, and zero. If the new machine is not identical to the one you
copied from, then you must reompile the zero file on the new machine using the code
from the BE/DIO subdirectory
mkdir /u/mdbs/be.<CURRENT_VERSION>

copy executables and run.be from the same directory on another back end.

mkdir /u/mdbs/Sockets

mkdir /u/mdbs/UserFiles

.If they are not then a detailed evaluation of the source code for system calls must be done. Refer
to the masters thesis of MAJ Stan Watkins to be completed by September 1993.
6. The entire code can be copied from another machine, say db8, by starting at the login directory
of the new machine and typing: rcp -r db8:/u/mdbs/greg NEWVERSION
7. It is possible to only copy the 6 controlIer processes, and the NEWVERSION/run files; how-
ever, you will need more if you plan on doing any revisions to the code on the new machine.

57

F. SAMPLE ERROR MESSAGES

1. Invalid Option

If you forget what the options are or what they do, enter an invalid one such

as start -h or begin -q. You will get the following response:

Welcome to MDBS, today is Tue Mar 2 12:56:47 PST 1993

unrecognized option h, valid options: [-c -v -d]

-c change Back End CONFIGURATION
-d copy (DISTRIBUTE) executable code to Back Ends
-v change VERSION name

2. Incorrect new version name

If you change the version name (e.g. to '7') in a directory that does not

contain the version name you will see (after you confirm the new version name):

ERROR: 7 not found in pwd.
.config.db should only be updated in /mdbs/7/run directory.

.config.db not updated.

3. Incorrect version for pwd

- If you try to run mdbs with the version in .config.db not in pwd (present

working directory), you will get the error message displayed below.

Do you wish to run the Multi Model, Multi Lingual,
Multi Backended Database System? (y/n) y

ERROR: version name 9'/" from .config.db
is not in current path: /u/mdbs/greg/run

If version name is not correct, restart with -v option
to correct version name.

If version name is correct, then you are running main
from the wrong directory. You must either

run main from /mdbs/7/run or
change begin / mdbs / start alias to cd to /mdbs/7/run

When changing versions, remember to verify defaultversion is
correct in configure.h. If a change is made,
recompile main.c then copy main to /mdbs/7/run/main

Exiting configure program.

58

4. Include file out of date

If you try to run a new version from the correct directory, but forget to

change the initialization of the global variable 'defaultversion' in configure.h to equal the

new version name, you will get the following error message:

ERROR: defaultversion "greg" does not match
current_version "andy'
If currentversion is correct,

Go to /mdbs/andy/bin directory
In configure.h correct default-version
compile main.c by typing 'make auto'
makefile will automatically copy main to run/main

If currentversion is not correct, restart with -v option
to correct version name.

Exiting configure program.

5. Missing file configuration file

If the .config.db file is missing from the current directory, you will see the

following WARNING:

WARNING: unable to read .config.db

Configuring for 1 Back End: db4
Controller: db8
Version: mdbs

6. Missing or Incorrect process names

If a file is missing or you did not change the make file in /u/mdbs/

VERSION/ (CNTRL & BE) to name the 12 executable files to end in ".exe: then you

will see:

startcntrl: ../CNTRL/<processname>.exe: not found

for each back end

run.be: bget.exe: not found

59

APPENDIX C. ON-LINE DOCUMENTATION

db8 /usr/work/mdbs/Docs

Map/ Msg/ Pcode/ Struct/

cc/com/
dio/
dm/
iig/
pp/
recp/
reqp/
sndrcv/
tmpl/

Figure 9: Documentation of MDBS design and structures

The documentation files are mostly text files with occasional troff formatted files which
contain f6rmatting commands and can be read as text. There are some diagrams in the
sub-directories of Struct which are text files.

Map!
A file for some of the 12 processes listing the function names, source file

where function can be found, and the purpose of the function. The latest revision was
done in May of 1988.

cc.map - concurrency control
common.map -
corn msg.map -
dio.map - disk i/o process
dm.map - directory management process
uig.map - process iig;
pp.map - post processing
recp.map - record processing
reqp.map - request preparation
ti.map - test interface

60

Msg/
A file for each type of message used for inter process communications. Each

file contains type, sender process, receiver process, source file, and purpose.

guide - contains information on the format of the files in this directory.
toc - contains the table of contents for this directory.

Pcode/
Pseudo code explaining the general sequence of events performed by each

process. The code is not complete, and was probably written in 1988.

Communication.pc
cc.pc
common.pc
dio.pc
dm.pc
grecp.pc
uig.pc
recp.pc
reqp.pc
ti.pc

Struct/

cc/
com/
dio/
dm1
iig/
pic
pic 1
pic2
pp/
print.them* - a useful shell script to print all the *.s files
recp/
reqp/
sndrcv/
tmpl/

61

APPENDIX D. FLOW CHARTS FOR SYSTEM GENERATION
SOFTWARE

The following four pages describe the control flow of the software I developed to

make MDBS a more manageable system. The first page is an overview of the whole

program. It describes the main() procedure. The following three pages show more detail of

three of the functions called by the main procedure. The three functions are

getsconfigurationo, reconfigureo, and changeversiono.

62

STAKr SOLPmbs h 4.JBFmAze

-d

YOG
nompat dw soame Cc&
WAtor COPY to Buk BM&

7

Yes no
yoo amed
mompile

Yes 00

make au

Cb-p--

P--fte-m-

aa* 7

yu

ya %

S" 7

no
-W.'r

y"

-. Cý

maiAo

y" no

. VwBift

< 4W2dLvsflbm md
no

SMP

Y"

"liardas sm 5 of 6 promm =sM6 proomm axt"Unwaft
M, oat.FO-U.- = Ed on comobt

63

main or

ye n

goftoflgision

am64

Calld in
main

OK toue?

noo

$mom arome

COWW-da to mai

65

canl frm

0 youwant to ane(iI)

Do is lw versi q

y

imt ty pwd itihi hagewiio
wamvo. 7

y6

APPENDIX E. SOURCE CODE FOR SYSTEM GENERATION
SOFTWARE

The following code is found in VersionName/bin and is compiled by being in that

directory on db8 or dbl 1 and typing 'make auto'. Auto is short for automatic reconfiguration

and start-up of the Multibackend Database Supercomputer (MDBS).

The first file, configure.h is the include file for main.c on db8. The second file,

configure.h is the include file for main.c on dbl 1. The third file is main.c, the same on all

machines.

67

*--

I UNITNAME I CONFIGURATION configure.h
include file for main.c

stored in directory: currentversion/bin
PROGRAM I
DESCRIPTION I Start the Multi-Lingual Parallel Distributed

Database program with varying number of Back Ends.

files needed to run main.c:
-- > on Controller <---

in current version/run/:
zero.dbn : shell script which uses rsh to call the

zero command on the named back end
number 'n' to zero meta & data disks

stop.dbn : shell script which uses rsh to call the
stop.cmd command on the named back end
number 'n' or execute on controller
to stop 6 processes

start.cntrl : shell script which starts 5 of 6
controller processes in background

master.run.be : template used to create back end run.be
.config.db : current version name followed by a

list of back ends in current configuration
main : this code compiled

in current version/CNTRL/:
all 6 controller processes

II=> on each Back End <--
in /u/mdbs/be.current version/:

*.exe : all 6 back end processes
run.be : shell script to start 6 Back End processes
trace files for all 6 processes (will be created)

in /u/mdbs/bin/:
zero : C program to erase memory

(source in current version/BE/DIO)
stop.cmd : shell script to kill last 6 pid's run
exe.awk : called by stop.cmd, pattern match *.exe in ps x

The code in this program is represented pictorially, see thesis

INPUTS stdin, .config.db file
OUTPUTS stdout
CREATED 19 October 1992
MODIFIED many times through May 1993
AUTHOR Andrew P. Meeks
PROJECT
PURPOSE AUTOMATE the START-UP process of the Multi-Modal,

Multi-Back ended, Multi-Lingual Database System
System UNIX
Compiler cc

/* IF HARDWARE CONFIGURATION CHANGES (equipment added, fixed, removed, breaks,
etc) you must review the following 7 lines of code for change */

/* enum all isivs { dbl, db2, db3, db4, db5, db6, db7, db8, db9 1;
char *isiviames[J - {"dbl", "db2", "db3", "db4", "db5", "db6", "db7", "db8", "db9"};*/

/* must have at least MAX BACK ENDS " " defined *1
/* the length of the blank strings must be at least as long as the

longest back end name *1
/* the following should be declared inside maino, but the compiler

will not allow "automatic aggregate initialization"
unless declared was in the header file

char *currentBackEnds[] - {, .. %%

68

/* uncoment next 3 lines for use with dbl at Pt Mugu:
char *benames[] - {Jdbl");
enum BackEnds { dbl);
enum BackEnds default be - dbl;

be sure to comment &ut or delete subsequent duplicate declarations

/* uncoment next 3 lines for use with db2 at SUPSHIP San Francisco:
char *be_names(] - {"db2");
enum BackEnds { db2 };
enum BackEnds default be - db2;

be sure to comment -ut or delete subsequent duplicate declarations

char *benames[] = {"db3", "db4", "db6", "db7", "db9"};
enum Back Ends { db3, db4, db6, db7, db9 };
enum BackEnds defaultbe - db4;

char *controller - Adb8"; /* to change, need to
(1) update pcl.def include file
(2) recompile executable code

/* enum Back Ends and all isivs can be used
to index be_names[] ang isivnames([] *

/* change 5 to 1 for use with single back end systems dbl and db2 */
#define MAX BACK ENDS 5
#define MAX-_STRING 64 /* used for ALL non constant string declarations */

/* IF VERSION IS CHANGED they you must update the following line accordingly */
char defaultversion[MAX_STRING] - "mdbs"; /* constant */

/* The following two lines must correspond to output of "make all" in
/u/mdbs/VERTION/bin directory. Actual files created in the makefiles
of each process */

char *BE-process[] - {"bget.exe", "bput.exe", 'cc.exe",
"dio.exe", "dirman.exe", 'recp.exe"';

char *CNTRL_process[] - ("ti.exe ", "cget.exe", "cput.exe",
"iig.exe", "pp.exe", "reqp.exe" };

/* "ti.exe " includes a space since it is called with a parameter *1
int NPROCESSES - 6;

#define FALSE 0
#define TRUE 1
#define ERROR 1
#define NOERROR 0

#define NO 0

#define YES 1

STATUS of equipment 11/6/92:

dbl Pt. Mugu
db2 SUPSHIP San Francisco
db3 back end, working
db4 back end, working
db5 no meta or data disk
db6 no data disk
db7 back end, working
db8 controller, working
db9 no data disk*/

/* eof: configure.h */

69

/*

I UNITNAME I CONFIGURATION configure.h
include file for main.c

stored in directory: currentversion/bin
PROGRAM
DESCRIPTION Start the Multi-Lingual Parallel Distributed

Database program with varying number of Back Ends.

files needed to run main.c:
--- > on Controller <--

in current version/run/:
zero.dbn : shell script which uses rsh to call the

zero command on the named back end
number In, to zero meta & data disks

stop.dbn : shell script which uses rsh to call the
stop.cmd command on the named back end
number In' or execute on controller
to stop 6 processes

start.cntrl : shell script which starts 5 of 6
controller processes in background

master.run.be : template used to create back end run.be
.config.db : current version name followed by a

list of back ends in current configuration
main : this code compiled

in current version/CNTRL/:
all 6 controller processes

=-=> on each Back End <--=
I in /u/mdbs/be.current version/:

*.exe : all 6 'ack end processes
run.be : shell script to start 6 Back End processes
trace files for all 6 processes (will be created)

I in /u/mdbs/bin/:
zero : C program to erase memory

(source in current version/BE/DIO)
stop.cmd : shell script to kill last 6 pid's run
exe.awk : called by stop.cmd, pattern match *.exe in ps x

The code in this program is represented pictorially, see thesis

I INPUTS I stdin, .config.db file
I OUTPUTS I stdout
I CREATED 1 19 October 1992
1 MODIFIED 1 27 April 1993 (by S.Watkins for new Sun hardware)
I AUTHOR Andrew P. Meeks
I PROJECT
I PURPOSE I AUTOMATE the START-UP process of the Multi-Modal,

SI Multi-Back ended, Multi-Lingual Database System
System I UNIX

I Compiler I cc

/* IF HARDWARE CONFIGURATION CHANGES (equipment added, fixed, removed, breaks,
etc) you must review the following 7 lines of code for change */

/* enum all isivs { dbll, dbl2, db13 };
char *isivinames[] - ("idbll", "db12", "dbl3"); */

/* must have at least MAX BACK ENDS " " defined
/* the length of the blank strings must be at least as long as the

longest back end name
/* the following should be declared inside maino, but the compiler

will not allow "automatic aggregate initialization"
unless declared was in the header file

char *current BackEnds[] - {"" ", ", " ", " ", " }

char *be names[] - {"dbl2", "dbl3");

70

enum Back Ends (dbl2, db13 1;
enum Back-Ends default-be - dbl3;

char *controller - "dbll"; /* to change, need to
(1) update pcl.def include file
(2) recompile executable code */

/* enum Back Ends and all isivs can be used
to index be names(] and isiv names[] */

#define MAX BACK ENDS 2
#define MAX-STRING 64 /* used for ALL non constant string declarations */

/* IF VERSION IS CHANGED they you must update the following line accordingly */

char defaultversion[MAXSTRING] - "greg";

char currentversion(MAX_STRING]; /* read in from .config.db file

char BE-path(MAXSTRING]; /* see set-path (); "/u/mdbs/be.VERSION/"; */
char CNTRLpath[MAX_STRING]; /* see setpath 0; "/u/mdbs/VERSION/CNTRL/"; */

/* The following two lines must correspond to output of "make all" in
/u/mdbs/VERTION/bin directory. Actual files created in the makefiles
of each process */

char *BE-process[] - {"bget.exe", "bput.exe", "cc.exe",
"dio.exe", 'dirman.exe", "recp.exe");

char *CNTRpLprocess(] = {"ti.exe ", "cget.exe", "cput.exe",
"iig.exe", 'pp.exe", "reqp.exe" 1;

/* "ti.exe " includes a space since it is called with a parameter */
int NPROCESSES - 6;

#define FALSE 0
#define TRUE 1
#define ERROR 1
#define NOERROR 0

#define NO 0
#define YES 1

/* STATUS of old ISIV equipment 930427:

dbl Pt. Mugu
db2 SUPSHIP San Francisco
db3 back end, working
db4 back end, working
db5 no meta disk
db6 no data disk
db7 back end, working
db8 controller, working
db9 no data disk*/

/* eof: configure.h */

71

/ * ..

I UNITNAME I CONFIGURE main.c
file stored in directory: VERSION/bin

PROGRAM
I DESCRIPTION start the Multi-Lingual, Parallel, Distributed

Database program with varying number of Back Ends.

GENERAL OUTLINE:
check if called with -c, -v, -d options -heck for flags ()

I read previous configuration get configuration ()
set controller and back end paths setpaths ()
display configuration show configuration ()

I if -v option used
get new version name changeversion ()

if -c option not used, ask if user wants to reconfigure
I WARNING: will erase database
I if YES or -c option used

erase previous database data zero ()
get new configuration get-configuration ()
save new configuration

if NO and -c option NOT used
ask if user wants to use present database
if NO

erase previous database data ze: j ()
I kill all lingering processes system (stop.machine)
I start 5 Controller processes system (start.cntrl)
I start all Back End processes system (rsh run.be)

start ti on controller system (ti.exe #)

NOTES:
I Version can ONLY be changed "f main called with -v option
I Controller is defined in "configure.h" to be db8
I Available Back Ends are defined in "configure.h"

I The code in this program is represented pictorially, see thesis

WARNING: revise configure.h with each version change

INPUTS stdin, .config.db file
I OUTPUTS stdout

CREATED 19 October 1992
MODIFIED I many times through March 1993
AUTHOR Andrew P. Meeks
PROJECT MDBS

I PURPOSE I get multi-model, mult.-oackended, multi-lingual database
system to work

I System I UNIX
I Compiler I cc

.--*
#include <strings.h>
#include <stdio.h>
#include "configure.h"

72

/* -

* CHECKFORFLAGS evaluate command line parameters
*

* parameters: argc, argv (in) same as in main()
* pNew-ver (in out) whether -v option used
* used for version change
* pNew-config (in out) whether -c option used
* used for configuration change
* pDist code (in out) whether -d option used
* used to copy code to BE's
* you can only used one option per "-1 sign
*

* return FALSE if no invalid options used to call this program
* ERROR if an.invalid option was used*/

int checkfor-flags (argc, argv, pNew-ver, pNew-config, pDist code
int argc;
char *argv[];
int *pNew-ver, *pNew-config, *pDist-code ;

char *pCH; /* pointer to parameter string */
int temp - 1;

if (temp < argc) /* at least one parameter used */{
while (temp < argc) /* another parameter to process */

pCH - argv [temp];
if (*pCH) /* first character must be a '-'{

pCH ++;
switch (*pCH) /* remember which option(s) used */
{

case 'c' : *pNew-config = TRUE;
break;

case "v' : *pNewver - TRUE;
break;

case Wd' : *pDistcode = TRUE;
break;

default : printf ('unrecognized option %c, ", *DCH);
printf ('valid options: [-c -v -d]\n\n");
printf ("-c change Back End CONFIGURATION\n");
printf ("-d copy (DISTRIBUTE) executable ");
printf ("code to Back Ends\n");
printf ("-v change VERSION name\n\n");
return (ERROR);
break;

temp ++; /* process next option */

return (FALSE);
/* end checkforflags () */

73

/*
* NOTINPWD return TRUE if string (Version name) in PWD string

* parameters: pwd (in) current working directory
* current-version (in) version name
*

* return: TRUE if cuirent version found in pwd string
* FALSE if current-version not found in pwd string
,/

int not in pwd (pwd, currentversion)
char *pwd;
char *currentversion;

char *pch - pwd; /* pointer to current portion of pwd */
int length - strlen (currentversion);

while (*pch)

pch++; /* increment pointer to character after I/' */
if (strncmp (pch, currentversion, length)){

/* scan path for next '/' but not past end of string *1
while (*pch ! 'I' && *pch)

++pch;I
else

/* found currentversion in pwd */
return (FALSE);

}

return (TRUE);

/* end notinypwd () *0

/*---------------------------------
* SHOWCONFIGURATIONdisplay version, controller, and back ends to be used

* parameters: nBackEnds (in) the number in current Configuration
* current BackEnds[] (in) strings of each back end name
* current version (in) name of version in .config.db
*

* return: no information
*/

int showconfiguration (nBackEnds, currentBackEnds, current-version)
int n BackEnds;
char 7current BackEnds[];
char *currentversion;

int i; /* array index */

printf ("\nThe Current Configuration is: \n");
printf ("\nVersion Name:\t%s \n", current version);
printf ("\nController:\t%s \n", controller);
if (nBackEnds -- 1)

printf ("\nl Back End: \n");
else

printf ("\n%d Back Endz: \n", nBackEnds);

for (i-0; i< n BackEnds; i++)
printf ("\E\t%s \n", currentBackEnds[i]);

74

* DEFAULTCONFIG configures database to have one back end

* parameters: pNBackEnds (out) number in default Configuration
* currentBackEnds[] (in) strings of each back end name
* current_version (in) name of version in .config.db
*

* return: NO ERROR if default configuration saved in .config.db
* ERROR if unable to open .config.db
*/

int default config (pNBackEnds, currentBackEnds, currentversion)
int *pNBackEnds;
char *current BackEnds[];
char *currentversion;
{

FILE *pFILE; /* pointer to .config.db file */

/* .config.db does not exist or cannot be written to *.

printf ("WARNING: unable to read .config.db\n\n");
printf ("Configuring for 1 Back End: %s\n", be names[defaultbe]);
printf ("\t\tController: %s\n", controller);
printf ("\t\tVersion: %s\n", defaultversion);

*pNBackEnds = 1;

/* initialize current-version */

strcpy (currentversion, default-version);

strcpy (currentBackEnds(O] , be names(defaultbe]);

if (pFILE - fopen (".config.db", "w"))

fprintf (pFILE, "%s\n", defaultversion);
fprintf (pFILE, "%s\n", benames [defaultbe]);
fclose (pFILE);

else

printf ("unable to write .config.db\n");
return (ERROR);

return (NO ERROR);
/* end defaultconfig () *0

/*...
* GETCONFIGURATIONread .config.db file from pwd
* initialize the two parameters:

* parameters: pN_BackEnds (out) number of Back Ends in .config.db
* current BackEnds[] (in) list of back end names
* current-version (out) name of version in .config.db

* return: NO ERROR if valid .config.db exists upon exiting
* ERROR if unrecoverable error in .config.db
*/

int getconfiguration (pNBackEnds, currentBackEnds, current-version)
int *pNBackEnds;
char *current BackEnds[];
char *current_version;

char pch(MAXSTRING]; /* temporary pointer to string */
FILE *pFILE; /* pointer to .config.db file
int found; /* boolean, if BE is a valid one */
int i; /* array index

75

if (pFILE - fopen (".config.db", "r"))

/* .config.db file is open */
fscanf (pFILE, "%s", pch);

/* initialize current version
should be strncpy (,,MAXSTRING); */

strcpy (currentversion, pch);

if (strcmp (defaultversion, currentversion)){
printf ("\nError: configure.h file has a different version name ");
printf ("than the default\n");
printf ("\t char *default version -\"%s\"; ", default version);
printf ("vs. .config.db: \"%s\" \n\n ", current version);
printf ("\tAny time the version is changed, defaultversion in);
printf ("configure.h \n\t must be updated.\n");
printf ("\tUpdate configure.h as needed and recompile main.c\n");
printf ("\tThe files are found in %s/bin\n", current-version);
/* return (ERROR); not used since exits later */

while (fscanf (pFILE, "%s", pch) !- EOF)
{

/* ! feof (pFILE) */

strcpy (currentBackEnds[*pN_BackEnds], pch);
found - FALSE;
for (i - 0; i < MAX BACK ENDS; i++)

if (strcmp (pch, be names[i]) -= 0){
found - TRUE;
break;I

if (found)
(*pNBackEnds) ++;

else
printf ("ERROR, back end name %s in .config.db invalid\n", pch);

/* end while */
fclose (pFILE);

if (*pN_BackEnds - 0)
return (defaultconfig (pNBackEnds, currentBackEnds,currentversion));

/* if fopen .config.db */
else{

return (defaultconfig(pNBackEnds, currentBackEnds, current-version));

return (NOERROR);
/* end getconfiguration () */

76

/* -

* ZEROBACKENDS calls a shell command in pwd which calls zero on
* each back end in current configuration

* parameters: nBackEnds (in) number of BackEnds in current configuration
* currentBackEnds[] list of back end names in current config

* return: no information
*/

int zero backends (n_BackEnds, currentBackEnds)
int n BackEnds;
char 7currentBackEnds[];

int i - 0; /* array index
char pch[MAX_STRING]; /* temporary pointer to string */

for (; i < nBackEnds; i++)

/* for each back end being used, call shell scripts to
/* zero meta and data disks */

sprintf (pch, "zero.%s", currentBackEnds[i]);
system (pch);

/* on controller, call shell script to remove files not needed */

sprintf (pch, "zero.%s", controller);
system (pch);

/*...
* SETPATHS sets the path of BEpath, CNTRL_path
,

* parameters: current-version (in) name of current version
* BEpath (out) complete path name for directory
* containing executable BackEnd code
* CNTRLpath (out) complete path name for directory
* containing executable Control code
* return: no information
*/

int setpaths (currentversion, BEpath, CNTRLpath)
char *currentversion, *BE-path, *CNTRL_path;

/* initialize BEpath to /u/mdbs/be.VERSION/ */
strcpy (BEpath, "/u/mdbs/be.");
strcat (BE path, current version);
strcat (BE-path, "/");

/* initialize CNTRL path to /u/mdbs/VERSION/CNTRL/ *1
strcpy (CNTRL_path, "/u/mdbs/");
strcat (CNTRLypath, current version);
strcat (CNTRL-path, "/CNTRL/");

77

/*
* CHANGEVERSION change version name and / or copy executable code to
* each working back end

* parameters: pN_BackEnds (in) number of BackEnds in current
* configuration
* currentBackEnds [] list of BackEnd names in current config
* current version (in) name of current version
* BEpath (in out) complete path name for directory
* containing executable BackEnd code
* CNTRLpath (in out) complete path name for directory
* containing executable Control code
* returns: YES if new version
* NO if no change to version
*/

int change version (pNBackEnds, current BackEnds, currentversion,
BEpath, CNTRLpath, pwd)

int *pN_BackEnds;
char *currentBackEnds[];
char *current version;
char *BE--path,
char *CNTRL-path;
char *pwd;
{

char pch(MAXSTRING]; /* temporary pointer to string */
char newversion[MAX_STRING]; /* new ve.:sion-name */
int i; /* array index
int found - TRUE; /* boolean if pwd includes new version */
FILE *pFILE; /* file pointer to .config.db file

/* ask if you want to change version */
printf ("\nWARNING:\t(1) changing the version should only be done for ");
printf ("major changes.\n ");
printf ("\t\t(2) Please consult Dr. Hsiao or all project members first\n");
printf ("\t\t(3) This MUST be run from the new version directory\n");
printf ("\t\t e.g. from directory /u/mdbs/VERSION/run.\n\n");

printf ("\tpwd -- %s\n", pwd);

printf ("\nDo you still want to change the current version? (y/n) ");

scanf ("%s", pch);
printf ("\n");
if (*pch-- 'y' II *pch "Y')

*pch -In'

while ((*pch-- "n" I I *pch - 'N') && (*pch != 'q' I I *pch !- IQ')

printf ("\nEnter the new version name: ");
scanf ("%s", newversion);
printf ("\n");
printf ("\nPlease verify the new version name to be: %s\n",

newversion);
printf ("\nIs this correct? (y/n) (q/Q to Quit) ");

scanf ("%s", pch);
printf ("\n");

if (*pch - 'q' I *pch -- 'Q')
return (NO);

strcpy (currentversion, newversion);

/* ----- should verify version name valid.-*/
/* -------- no /*&@^%!I$# characters ------------ *
/* NOT IMPLEMENTED */

78

/* verify that new version is in the current path */
* -- *

if (notin_pwd (pwd, currentversion))
{

printf ('ERROR: %s not found in pwd. \n", current version);
printf ("\t.config.db should only be updated in /mdbs/");
printf ("%s/run directory.\n\n", currentversion);
printf ("\t.config.db not updated.\n");
return (NO);

/* -------- rewrite .config.db -------- *
/* ------------------------------------ *
if (pFILE - fopen (".config.db", "w")){

printf ("pwd includes new version, updating .config.db \n");
fprintf (pFILE, "%s\n", currentversion);

for (i-0; i < *pNBackEnds; i++){
fprintf (pFILE, "%s\n", currentBackEnds [ii);

fclose (pFILE);

else{
printf ("unable to write to .config.db\n");
return (NO);

/* change BEpath and CNTRLpath to include new version name */
setpaths (currentversion, BE/path, CNTRLpath);

/* edit master.run.be file and put in sample run.be file in pwd
to be copied to each back end

printf (M\nHave Back Ends been set up for this version? (y/n) ");
scanf ("%s", pch);
printf ("\n");
-if (*pch -- 'y' IN *pch -- 'Y')

return (YES);

sprintf (pch, "sed -e \"s/VERSION/%s/g\" master.run.be > run.be",
current-version);

printf ("EXECUTING: %s\n", pch);
system (pch);

/* ---- make run.be executable after copying ----
system ("chmod ug+x run.be"); */

sprintf (pch, "chmod ug+x run.be");
printf ('EXECUTING: %s\n", pch);

system (pch);

79

for (i - 0; i < MAXBACKENDS; i++)

/* ---- create new version directory on each BackEnd --- *
/* ------------------- could test before execution-----

rsh %s mkdir currentversion */

sprintf(pch,"rsh %s -n mkdir be.%s", benames[i], current-version);
printf ("EXECUTING: %s\n", pch);

system (pch);

/* ---- copy run.be to new directory on each BackEnd -- *-
/* rcp run.be %s/u/mdbs/be.%s */
sprintf (pch, "rcp run.be %s:%s ", benames[i], BEpath);

printf ("EXECUTING: %s\n", pch);
system (pch);

/* ---- cbpy 6 processes to new directory on each BackEnd ---. *-
/* rcp .. /BE/*.exe %s:/u!mdbs/be.%s */
sprintf (pch, "rcp /u/mdbs/%s/BE/*.exe %s:%s ",

currentversion, benames[i], BE_path);

printf ("EXECUTING: %s\n", pch);
system (pch);

}

else
/* user did not wish to change current version */
return (NO);

return (YES);

/* end change-version () *0

/*...
* RECONFIGURE allows user to change configuration.
* no illegal configurations are accepted.
* assumes get-configuration completed successfully

* parameters: pN_BackEnds (in) the number in current Configuration
* currentBackEnds[] strings of each back end name

* returns: YES if new version
* NO if no change to version
*/

int reconfigure (pN_BackEnds, currentBackEnds)
int *pN_BackEnds;
char *currentBackEnds[];

char pch(MAX_STRING]; /* temporary pointer to string */
FILE *pFILE; /* pointer to .config.db file
int reoconfiguring - TRUE; /* boolean, if BE is a valid one
int i; /* array index

/* NOTE: if we want to re arrange data on back-ends, we must save
the old current BackEnds(1..NBackEnds] data to a tape
then reload (via tape or file--mass load) so mdbs will
automatically redistribute. NOT IMPLEMENTED

80

-* - get new configuration */
while (reconfiguring)

printf (" Indicate which Back Ends you want in the configuration \n");
printf (' by responding y/n as each Back End is listed:\n");

for (*pN_BackEnds - 0, i=0; i< MAXBACKENDS; i++)

printf ("\n\t\t%s ? ", be names[i]);
scanf ("%s", pch);
if (*pch - "y' I *pch =- 'Y')

strcpy (current BackEnds[*pN_BackEnds], benamesti]);
(*pN_BackEnds)++;

I

showconfiguration (*pNBackEnds, currentBackEnds, currentversion);

/* -------- opportunity to confirm changes -------- *
if (*pN_BackEnds - 0)

printf ("WARNING: ");

printf ("If you do not specify any back ends, the configuration\n");
printf ("\t will not be updated\n\n");

printf ("Is this configuration satisfactory? (y/n) ");
scanf ("%s", pch);
printf ("\n");
if (*pch -= y' I I *pch == "Y')

reconfiguring - FALSE;

/* end while (reconfiguring) */

/* ----------- write new .config.db only if valid -------- *

if (*pN_BackEnds -- 0)
-/* reload old configuration since new one is invalid */
getconfiguration (pNBackEnds, currentBackEnds, current-version);

else
if (pFILE = fopen (".config.db", "w"))

fprintf (pFILE, "%s\n", currentversion);

for (i-0; i < *pNBackEnds; i++)

fprintf (pFILE, "%s\n", currentBackEnds [i]);

fclose (pFILE);

else

printf ("Error: unable to write to .config.db\n");
printf' ("\t.config.db not updated with change(s)\n\n");
printf ("\tYou must do one of the following:\n");
printf ("\t\tchmod u+w .config.db \n\t\trm .config.db\n");
printf ("\tthen run this program again.\n");
return (ERROR);

/* ----------- display configuration
/* -- *
show-configuration (*pN_BackEnds, currentBackEnds, current-version);

zero backends (*pNBackEnds, currentBackEnds);
return (NO ERROR);
/* end reconfigure () */

81

/*

* MAIN parameters: conmnand line arguments (count and strings)

* see comments at beginning of file, and in code
*/

main (argc, argv, env)
int argc;
char *argv[];
char *env[];
{

int nBackEnds - 0; /* number of Back Ends being used
char pch[MAXSTRING]; /* temporary pointer to string */
char pwd[MAX_STRING]; /* current directory, pointer to string */
int i; /* array index
int new ver = FALSE; /* if -v option used to call this program */
int new config = FALSE; /* if -c option used to call this program */
int dist code = FALSE; /* if -d option used to call this program */

char currentversion[MAX_STRING]; /* read in from -config.db file

char BEypath[MAX_STRING]; /* see set-path 0; "/u/mdbs/be.VERSION/"; */
char CNTRLpath[MAXSTRING]; /* see setpath (); "s/u/mdbs/VERSION/CNTRL/";*/

printf ("\n\nWelcome to MDBS, today is ");

fflush (stdout);
system ("date");

printf ("\n\n");

/* ----------- check for command line parameters */
if (checkfor-flags (argc, argv, &newver, &new-config, &dist code))

return (ERROR);

/* ----------- read .config.db */

if (get configuration (&n_BackEnds, currentBackEnds, currentversion))

printf ("\nError in get-configuration, Exiting configure program. \n");
return (ERROR);

getwd (pwd);

if (notinpwd (pwd, currentversion))

printf ("\nWARNING: version name \"%s\" from .config.db", currentversion);
printf ("\n\t not in current path: %s\n", pwd);
printf ("\t MDBS will not run unless version name is in pwd\n");

setpaths (currentversion, BE-path, CNTRLpath);

/* ----------- display executable listings of BE and CNTRL */
printf ("\nCheck the time each file was last compiled:\n\n");

sprintf (pch, "Is -1 .. /BE/*.exe");
system (pch);

printf ("\n") ;

sprintf (pch, "is -1 .. /CNTRL/*.exe");
system (pch);

printf ("\nThere should he 12 files listed, if not you need to recompile.\n");

82

/* ----------- ask to compile if -d and -v not used to call main
/* -- *
if (dist code - FALSE && new-ver - FALSE) {

printf ("\nDo you need to recompile any executable and/or copy the 6 ");
printf ("\n executable files to each Back End ");
printf ("\n(bget, bput, cc, dio, dirman, recp.exe)? (y/n) ");

scanf ("%s', pch);
printf (V\n");

if (*pch -= "y' I1 *pch -- 'Y' II distcode{
printf ("\nDo you need to recompile before copying to the back ends? (y/n) ");

scanf ("%s", pch);
printf ("\n");
if (*pch -- 'y' II *pch =- 'Y'){

/* -------- recompile executable code
/* --- *
sprintf (pch, "../bin/make all");

printf ("EXECUTING: %s\n", pch);
system (pch);

)
/* - copy recompiled code to each back end/ * -- - - - - - - - - - - - - -- - - - - - - - - - - - -

sprintf (pch, " ");
for (i = 0; i < MAXBACKENDS; i++)

/* for each back end being used, stop 6 processes on it
which may still be running from last time

sprintf (pch, "rcp .. /BE/*.exe %s:%s", be names(i], BEpath);
printf ("EXECUTING: %s\n", pch);

system (pch);

}
/* end if recompile or recopy BE processes

/* ------ to change the current version -v option must be used *// * -- - - - - - - - - -- - - - - - - - - - -- - - - - - - - - -

if (newver)
{

change_version (&n BackEnds, current BackEnds,
currentversion, BEpath, CNTRLpath, pwd);}

show configuration (nBackEnds, currentBackEnds, currentversion);

/* ----------- ask to reconfigure if -c not used

if (new config -- FALSE) f
printf ("\n WARNING: All data will be lost if you reconfigure\n");
printf ("\n Do you wish to reconfigure the Back Ends? (y/n) ");
scanf ("%s", pch);
printf ("\n");)

if (*pch -- 'y' I1 *pch -- 'Y' I1 newconfig)

if (reconfigure (&n_BackEnds, currentBackEnds) -= ERROR)
return (ERROR);

83

else /* --------- do not want to reconfigure back ends-

/* ----------- ask to use present database -------------- *
/* -- *
/* ----------- display currently loaded database (pry)
/* -- *
printf ("\n Do you wish to use current database? (y/n) ");
scanf ("%s", pch);
printf ("\n");

if (*pch - 'y' I *pch -- 'Y')

/* assumes that the user knows what database is loaded */
/* --- *
/* could check for existing data on disks here

printf ("Checking what database is on Back Ends is ");
printf ("NOT IMPLEMENTED\nYou have to remember or use pry\n")

else

zerobackends (nBackEnds, currentBackEnds);

} /* end else of if (reconfigure?)

printf ("\n Do you wish to run the Multi Modal, Multi Lingual,\n");
printf ("\t\tMulti Backended Database System? (y/n) ");
scanf ("%s", pch);
printf ("\n");

if (*pch -- "n' 1I *pch-- IN'){
return (NOERROR);}

/* --------- verify current version in pwd --------------------- *
/* ---------- explain what to do and ABORT if it is not *1
if (not in_pwd (pwd, currentversion))

printf (V\nERROR: version name \"%s\" from .config.db", currentversion);
printf ("\n\tis not in current path: %s\n\n", pwd);

printf ("\tIf version name is not correct, restart with -v option\n");
printf ("\tto correct version name.\n\n");
printf (M\tIf version name is correct, then you are running main\n");
printf ("\tfrom the wrong directory. You must either\n");
printf ("\t\trun main from /mdbs/%s/run or\n", current version);
printf ("\t\tchange begin / mdbs / start alias to cd to /mdbs/");
printf ("%s/run\n\n", currentversion);

printf ("\tWhen changing versions, remember to verify default-version");
printf (" is \n\tcorrect in configure.h. If a change is made,\n");
printf ("\trecompile main.c then copy main to /mdbs/");
printf ("%s/run/main\n\n", current version);
printf ("\tExiting configure program.\n");
return (ERROR);

84

/* ----------verify current version matches default version ---
/* -----------explain what To do and ABORT if no match-----------*
if (strncmp (default-version, current-version, strlen (current version)))

printf ("nERROR:");
printf ("\tdefault -version \"%s\" does not match \n", default-version);
printf ("tcurrent_ version \"%3\"\n", current-version);
printf ("\tlf current version is correct, \n");
printf ("\t\tGo to /m~bs/%s/bin directory\n", current -version);
printf ("\t\tln configure.h correct default version \n");
printf ("\t\tcompile main.c by typing 'make~main'\n");
printf ("\t\tmakefile will automatically copy main to run/main\n\n");
printf ("tlf current -version is not correct, restart with -v option\n");
printf ("\tto correct version name.\n\n");
printf ("\tExiting configure program. \n");
return (ERROR);

/*------------- kill all lingering processes--------------------
-- *

for (i - 0; i < nBackEnds; i++)

/* for each back end being used, stop 6 processes on it
which may be still running from last time *

sprintf (pch, "stop.%s >>$! trace", currentBackEnds(i]);
system (pch);

1* ensure the 6 processes are stopped on the controller

sprintf (pch, "stop.%s >>$! trace", controller);
system (pch);

/* ------------start 5 controller processes-----------------
--- *

printf ("EXECUTING: start .cntrl\n", pch);
system ("start.cntrl");

/* NOT IMPLEMENTED: check all 5 processes running *

/* ------------start all back end processes on each back end *
1* ~execute: "Irsh %s -n /u/mdbs/be.greg/run.be" *

/*--*

for (i - 0; i < nBackEnds; i++)
{

sprintf (pch, "rsh %s -n %srun.be &", current BackEnds[iJ, BE~path);
printf ("EXECUTING: %s\n", pch);

system (pch);

/* NOT IMPLEMENTED: check all processes running on each back end *

/* --------start user interface on (this machine, the) controller *
1* execute: ti.exe InBackEnds'

/*-- *

3printf (pch, "%s%s %d", CNTRL~path, CNTRL~process [0], nBackEnds);

printf ("EXECUTING: %s\n", pch);
system (pch);

return (NOERROR);
) /* end main()o

1* eof: main.c *

85

APPENDIX F. MISCELLANEOUS FACTS ABOUT USING MDBS

A substantial portion of this appendix was based on the README file written by John

Locke, systems programmer at the Naval Postgraduate School.

A. HOW TO START-UP THE SYSTEM AFTER THE POWER GOES OFF.

1. Fordbl-db9

Turn on monitors (for all systems)
Turn on db8 (use switch above tape drive)

wait about 10 seconds
push left of 4 red horizontal buttons (1' from floor)

At monitor type
@ <CR> (<CR> means carriage return)

you should not get prompted for the date since an internal battery exists

For each Back end Unit:
Turn on power switch centered on the front top of the machine)

wait
Push START button in vertical column of brcwn buttons)

wait for green light
Push left of 4 red horizontal buttons (1' from floor)

At monitor type
@ <CR>

when prompted for date (you only get 30 seconds, or the shut-down time becomes the
current time)

enter date in format: YYMMDDHHMM

These instructions are short (and cryptic) since most people do not use them, and the
typical person does not want to read long instructions.

2. For Sun4 Workstations

Turn on power. If automatic reboot does not start, hold down the STOP (or

F1) button then push the A button. At the '>' prompt, enter 'b' for boot. If the system does

not reboot, then seek help from a systems programmer.

86

B. SOURCE DIRECTORY LOCATION

This source distribution is in directory /u/mdbs/greg on host db8. The greg version is

art improvement on source from directory /u/mdbs/7 on host db4. Version 7 is protected by

having root as the owner. To work on the system it is STRONGLY recommended to make

a copy of the whole distribution or at least the file or files which you modify BEFORE

making any changes. For example, to copy the source into a directory named "new" execute

this command (which will work across the network):

> rcp -r db8:/u/mdbs/greg new

The rest of these instructions will assume the "new" is the new source. You will want

to use a more distinctive name, like your own. Expect the copying to take about 3 minutes.

C. COMPILING

To compile or recomp: all or part of MDBS, change directory to the bin directory of

the version you need compiled. Then type "make all" to compile any code which might

have been modified1. This includes any utility programs stored in any subdirectory which

has corresponding lines in a makefile to compile them. Other options for the main makefile

include auto, clean, and dist.

make auto will compile only the system-generation program (aka configure.h and

main.c).

make clean will remove all .o files

make dist will compress all files into /u/mdbs/dist.tar and store that file to tape

"7fhen you type make all, a file with shell commands, makeall, is executed. This file

calls the mk file in directories corresponding to each of the 12 processes. Ensure all

1. It is possible that a modified file will not cause the makefile to recompile the associated process.
This may be caused by a missing or incorrect dependency in the corresponding makefile. You
should check the nake file and correct the dependency (or force recompililatior by deleting the
object file for the affected file and some or all of the object and executable files compiled from that
file). Then make the affected file.

87

controller processes are not running by using the automatic system start up program or by

using the stop.db8 file to kill them.

A successful compilation should look something like:

"> cd bin
"> make all
Making the Configure Program
Making IIG...
Making CPCL...
Making PP...
Making REQP...
Making TI...
Making CC...
Making DIO...
Making DM...
Making BPCL...
Making RECP...
Controller Processes...
-rwxrwxr-x 1 mdbs 75398 May 21 15:18 .. /CNTRL/cget
-rwxrwxr-x 1 mdbs 75398 May 21 15:18 .. /CNTRL/cput
-rwxrwxr-x 1 mdbs 56657 May 21 15:17 .. /CNTRL/iig
-rwxrwxr-x 1 mdbs 56947 May 21 15:20 .. /CNTRL/pp
-rwxrwxr-x 1 mdbs 92551 May 21 15:23 .. /CNTRL/reqp
-rwxrwxr-x 1 mdbs 116578 May 21 15:26 .. /CNTRL/ti
Backend Processes...
-rwxrwxr-x 1 mdbs 75414 May 21 15:36 .. /BE/bget
-rwxrwxr-x 1 mdbs 75414 May 21 15:36 .. /BE/bput
-rwxrwxr-x 1 mdbs 67607 May 21 15:29 .. /BE/cc
-rwxrwxr-x 1 mdbs 46655 May 21 15:30 .. /BE/dio
-rwxrwxr-x 1 mdbs 93213 May 21 15:34 .. /BE/dirman
-rwxrwxr-x 1 mdbs 108419 May 21 15:39 .. /BE/recp

The output from the several make files are put in either err (on cs4322 VerE.6) or

make_result (on mdbs version 7 and later) files corresponding to the mk file. The

makeresult files can be viewed by typing:

"> cd /u/mdbs/new
"> more */*/makeresult

REMEMBER to copy the back end processes to the back ends each time you

recompile since the back end executables are stored on the controller and are not copied to

each back end automatically. The automatic system startup program will do the copying for

you (see Appendix B, paragraph C). This copying should be done each recompilation since

any modification to an include file could affect inter-process communications. A successful

make will change the date and time of the processes whose code was modified.

88

D. COMPILING AN INDIVIDUAL PROCESS

To compile an individual process, change directory to the source for that process and

execute the script "mk". "Mk" will change into the "Object" directory, run the makefile

and, if successful, will compile the updated process and place it in the CNTRL or BE

directory as appropriate. The results of the make will be written to the file "makeresult"

in the process source directory. It should always be read after compiling to see what

actually happened. In the event of an unsuccessful compile, it will contain the error

message.

E. DEBUGGING AND FLAGS

Most source files have a line near the top to include the file"flags.def':

#include "flags.def'

This causes the preprocessor to replace the #include line with the contents of

"flags.def'. An abbreviated version of "flags.def':
/*

#define EnExFlag
#define msg-prjflag
*/

Normally, the #define lines in "flags.def' will be bracketed with the C comment

delimiters. There is one important exception, #define LangIFFlag, which must not be

commented out. If LangIFFlag is not defined, then you will be unable to use any language

other than the attribute based data language. A comment has the effect of turning off the

flag(s). To turn one on, it is necessary to edit "flags.def' and move the selected flags outside

of the comment delimiters. This will not force a recompile of the entire process because

"flags.def' is not listed as a dependency for the source files in the makefile. We don't

always want every process compiled with flags turned on. It can create a great deal of

debugging output, and we may have isolated the problem area of the code by then. So after

editing "flags.def', the next step is to remove the object files for the modules we want flags

turned on for. These files, ending with .o, match the names of the .c files and are to be found

89

in the "Object" directory below the process source. After removing the relevant .o files,

build the process with "mk".

So what does turning on a flag do? Say I edited "flags.def" to be:

#defime EnExFlag

#define msgpr_flag
,/

The preprocessor variable EnExFlag is now defined to a logical true. The preprocessor

will act conditionally upon encountering structures like this:

#ifdef EnExFlag
printf("Enter func_x\n");
fflush(stdout);

#endif

If EnExFlag is true, the code between the #ifdef and #endif lines will be included in

the compiled object. The EnExFlag, it so happens, is used to show when the entrance and

exit to functions occurs in the flow of execution. Other flags have different purposes--these

are documented in "flags.def'.

To turn off flags requires a simple reversal of the procedure. Place the #define lines

back between the comment delimiters in "flags.def', remove the object files that have flags

turned on, and recompile the process.

REMEMBER that there are multiple copies of some include files, particularly

flags.def. If you make a change to one, you may or may not want to change the other copies

of the files depending on what stage of programming or debugging you are in.

F. THE HIGHER LEVEL LANGUAGE INTERFACES

In version 7, the make files are set up to compile the test interface (TI) without the four

higher level language interfaces, since not everyone works with them and to debug the

controller-back end communications. To include this code these two steps must be

followed:

1. Edit flags.def in TI to define the LangIFFlag. See the above section on

debugging flags.

90

2. Edit TI/makefile and uncomment the LIBS definition and the line with

"cd ../LanglF'. Both are marked with comments.

3. "Make all" in Version/bin as described above.

To turn off the higher level language interfaces. reverse the above steps in the same

order listed.

G. CHECKING THE HARDWARE CONFIGURATION

The system is typically run on a controller (usually db8) and at least one back end. The

controller requires no special hardware, but is named in the file COMMON/pcl.def. Change

this file to use a controller other than db8. Unlike db8, each back end must have two disk

drives to be used as the meta and data disks, /dev/sd lc and /dev/sm0c, respectively. Not all

the ISI's have both disks in working order. To determine if the disks are available, perform

a simple read operation on each, for example:

> head /dev/sdlc

The prompt should return quickly. If the following message prints, the disk is not

available and the machine cannot be used as a back end:

> head /dev/smOc
/delv/smOc: No such device or address

If this message appears, the ownership of the disk file must be changed by a staff

member:

> head /dev/sdlc
/dev/sdlc: Permission denied

at the time of this writing, the status of equipment is:

dbl Pt Mugu
db2 SUPSHIP San Francisco
db3 back end, working
db4 back end, working
db5 no meta disk
db6 no data disk
db7 back end, working
db8 controller, working
db9 no data disk

91

H. THE DEVELOPMENT CYCLE

This is to give the big picture of working on the MDBS code. There are a few steps to

the development cycle. Apart from the actual coding, all are easy but it is easy to forget a

step and then be confused by the results of a run. The following will provide a checklist of

steps to follow. It assumes that the initial set-up has already been done and the system has

been successfully run.

1. Edit code
2. Compile process with individual process"mk" or entire system "make all"
3. Check trace files for debugging output
4. If any include file or back end code was modifed, copy the new back end

process(es) to the directory on each back end corresponding to the version name
(e.g. be.greg). This can be done by the system-generation software (Appendix B,
section C).

5. Run the system (as described in Appendix B, section A).

L RUNNING THE SYSTEM

To start the system, see Appendix B. Once the user-interface process is running, the

system might appear to be up, though some processes have died. This will usually be due

to changes you have made to the code not working. For example, to check the process table

on a back end:

> ps ax I grep ".exe"
3956 ? S 0:00 /u/mdbs/be.Versionname/bget.exe
3957 ? S 0:00 /u/mdbs/be.Version_name/dirman.exe 100
3958 ? S 0:00 /u/mdbs/be.Version_name/cc.exe
3959 ? S 0:00 /u/mdbs/be.Version_name/recp.exe
3960 ? I 0:00 /u/mdbs/be.Version_name/dio.exe
3961 ? S 0:00 /u/mdbs/be.Version_name/bput.exe

The output shows the six back end processes running. The run scripts are set to

channel their output, if any, to files with the name "proc-name.tr", where proc name is the

name of the process. If a process is compiled to produce debugging data, the data will be

output to that file. (ti.exe, the "test" user interface, is an exception--it outputs to the screen.

To save TI output, execute "script" before starting the program.)

Note that the distribution assumes use of only one back end. The number of back ends

is given to ti as an argument when called by the system-generation program.

92

J. UTILITY PROGRAMS

Several utility programs have been written for mdbs. The executable file for each is

usually kept in the bin directory of the version. Location of source is noted for binaries.

constants - prints out meta table sizes (source in DM)
cpcount - copies a file for a given number of bytes; used to copy meta and data disks

to other back ends (source in DIO)
cpydisks - shell script that uses cpcount; WARNING: Do not run this program from

the controller
disp - dynamic meta table disp (source in DM)
gdb - generate test database of arbitrary size from template file (source in CNTRL/

TI/). usage: gdb D.t D[.r]
makeall - script to make every process (called by bin/makefile)
rectag - prints out formatted data from data disk (source in DIO)
zero - writes all O's to a file; used to blank meta and data disks (source in DIO)

93

APPENDIX G. SELECTED MDBS FILE LISTINGS

A. CONTROLLER

The following files are kept in the 'run' directory for each version.

file: runhrnaster.run.be

#!Ibinlcsh

echo Running backend on 'hostnaine'...

/u/mdbs/be.VERSION/bget.exe >&! /u/xndbs/be.VERSION/bget.tr &
/u/mdbs/be.VERSION/dirman.exe 100 >&! /u/mdbs/be.VERSION/dirrnan.tr&
/u/mdbs/be.VERSION/cc.exe >&! /u/nmdbs/be.VERSION/cc.tr &
/u/mdbs/be.VERSION/recp.exe >&! /u/xndbs/be.VERSION/recp.tr &
/u/mdbs/be.VERSION/dio.exe >&! /u/xndbs/be.VERSION/dio.tr &

(sleep 16; /u/mdbs/be.VERSION/bput.exe >&! /u/mdbs/be.VERSION/bput .tr)&

master.runmbe

file: run/stop.db4

echo stopping processes on isiv4
rsh db4 Iu/mdbslbinlstop.cmd

stop.db4

94

file: run/stop.db8

echo stopping processes on 'hostname', the controller

ps -x I awk -f .exe.awk >! list2.stop
file .exe.awk contains: /*exe/ (print $1)

set noclob

set a=Wcat list2.stop'
if ($#a) then

echo killing $a
kill $a

else
echo no processes to kill on 'hostname'

endif
rm list2.stop

stop.db8

file: run/zero.db8

this is only for the controller

#!/bin/csh

echo Removing CINBT and IIG AT tables on controller, 'hostname'...
rm -f /u/mdbs/UserFiles/*.cinbt
rm -f /u/mdbs/UserFiles/*.iig.at
rm -f /u/mdbs/UserFiles/.R*

rm -f /u/mdbs/.*.pid
rm -f /u/mdbs/greg/run/trace/*.tr

removing ? from Sockets: copied from cs4322 acct
rm -f /u/mdbs/Sockets/GPCLB
rm -f /u/mdbs/Sockets/GPCLC

there is no backend meta disk on db8

there is no backend disk on db8

zero.db8

95

file: /greg/run/start.cntrl.screen.trace

THIS FILE WRITES ALL DEBUGGING STATEMENTS TO THE SCREEN

#!/bin/csh

echo starting 5 of 6 controller processes on 'hostnamxe'...

.. /CNTRL/cget.exe &

.. /CNTRL/cput.exe &

.. /CNTRL/pp.exe &

.. /CNTRL/iig.exe &

.. /CNTRL/reqp.exe &

to be executed when called by program which called this shell script
output goes to screen
.. /CNTRL/ti.exe n

startcntrl

file: /greg/run/start.cntrl

NORMAL METHOD is to put debugging comments into .tr files

#!/bin/csh

echo starting 5 of 6 controller processes on 'hostname'...

.. /CNTRL/cget.exe >&! trace/cget.tr &

.. /CNTRL/cput.exe >&! trace/cput.tr &

.. /CN T RL/pp.exe >&! trace/pp.tr &

.. /CNTRL/iig.exe >&! trace/iig.tr &

.. /CNTRL/reqp.exe >&! trace/reqp.tr &

to be executed when called by program which called this shell script
output goes to screen
.. /CNTRL/ti.exe n

starLcntrl

96

Two files modified for Sun csh

file: run/stop.dbll
modified 930427 for compatability with Sun system.

echo stopping processes on 'hostnaxe', the controller

!/bin/csh

ps -x I awk -f .exe.awk > list2.stop
file .exe.awk contains: /\.exe/ (print $1)

set noclob

foreach a ('cat list2.stop')
echo killing $a

kill $a
end
rm list2.stop

stop.dbll

file: /greg/run/start.cntrl
modified 930512 for compatability with Sun.

#!/bin/csh
rm trace/*.tr
echo starting 5 of 6 controller processes on 'hostname'...

.. /CNTRL/cget.exe > trace/cget.tr &

.. /CNTRL/cput.exe > trace/cput.tr &

.. /CNTRL/pp.exe > trace/pp.tr &

.. /CNTRL/iig.ex• > trace/iig.tr &

.. /CNTRL/reqp.exe > trace/reqp.tr &

to be executed when called by program which called this shell script
output goes to screen
.. /CNTRL/ti.exe n

startcntrl

97

B. BACK ENDS

The following file is stored on each back end in the 'bin' directory.

file: binstop.cmd

e,.ho stopping processes on back end 'hostname'

ps -x I awk -f bin/exe.awk >! list2.stop
file exe.awk contains: /*exe/ (print $1)

set noclob

set a='cat list2.stop'
if ($#a != 0) then

echo killing $a
kill $a
for some reason, this won't work on last line >$! stop.trace

else
echo no processes to kill on 'hostnane'

endif
rm list2.stop

stop.cmd

The following file is stored on each back end in the 'be.VERSION' directory.

#!/bin/csh

echo Running backend on 'hostname'...

/u/mdbs/be.greg/bget.exe >&! /u/mdbs/be.greg/bget.tr &
/u/mdbs/be.greg/dirman.exe 100 >&! /u/mdbs/be.greg/dirman.tr&
/u/mdbs/be.greg/cc.exe >&! /u/mdbs/be.greg/cc.tr &
/u/mdbs/be.greg/recp.exe >&! /u/mdbs/be.greg/recp.tr &
/u/mdbs/be.greg/dio.exe >&! /u/mdbs/be.greg/dio.tr &

(sleep 16; /u/mdbs/be.greg/bput.exe >&! /u/mdbs/be.greg/bput.tr) &

runmbe

98

LIST OF REFERENCES

Banerjee, Jayanta, David K. Hsiao, and Krishnamurthi Kannan, "DBC--A Database Computer for Very Large
Databases," IEEE Transactions on Computers, vol C-28, no 6, June 1979, pp. 414-429.

Bourgeois, Paul A., "The Instrumentation of the Multimodel and Multilingual User Interface," M. S. Thesis.
Naval Postgraduate School, Monterey, California, March, 1993.

Chung, Chin-Wan, "DATAPLEX: An Access to Heterogeneous Distributed Databases," Communications of
the ACM, vol 33, no 1, January 1990, pp. 70-80.

De Witt, David J. "DIRECT--A Multiprocessor Organization for Supporting Relational Database
Management Systems," IEEE Transactions on Computer, vol C-28, No. 6, June 1979, pp 395406.

Elmasri, Ramez and Shamkant B. Navathe. Fundamentals of Database Systems. New York. The Benjamin/
Cummings Publishing Company, Inc., 1989.

Hammond, Greg Alan, "The Instrumentation of a Parallel, Distributed Database Operation, Retrieve-
Common, for Merging two large sets of records," M. S. Thesis, Naval Postgraduate School, Monterey,
California, June 1992. (H-17526)

Hennessy, John L. and David A Patterson. Computer Architecture A Quantitative Approach. San Mateo,
California. Morgan Kaufmann Publishers, Inc., 1990.

Hsiao, David K., "A Parallel, Scalable, Microprocessor-Based Database Computer for Performance Gains
and Capacity Growth," IEEE Micro, December 1991, pp. 44-60.

Hsiao, David K., "Federated Databases and Systems: Part I - A Tutorial on Their Data Sharing," Very Large
Database (VLDB) Journal, vol 1, no 1, 1992, pp. 127-179.

Hsiao, David K._ "Federated Databases and Systems: Part II - A Tutorial on Their Resource Consolidation,"
Very Large Database (VLDB) Journal, vol 1, no 2, 1992, pp. 285-310.

.Hsiao, David K. and Magdi N. Kamel, "Heterogeneous Databases: Proliferations, Issues, and Solutions,"
IEEE Transactions of Knowledge and Data Engineering, vol 1, no 1, March 1989, pp. 45-62.

Quantock, David E., "The Real-Time Roil-Back and Recovery of Transactions in Databae Systems," M. S.
Thesis, Naval Postgraduate School, Monterey, California, June, 1989.

Schuster, Stewart A. et.al. "RAP.2--An Associative Processor for Databases and Its Applications," IEEE
Transactions on Computers, Vol C-28, No 6, June 1979, pp. 446-458.

Sheehan, William A., "The Design of a DL/I-to-Network Interface for the Multi-Model, Multi-Lingual,
Multi-Backend Database System," M. S. Thesis, Naval Postgraduate School, Monterey, California,
December 1989.

Su, Stanley Y. W., Le Huu Nguyen, Ahmed Emam, and G. J. Lipovski, "The Architectural Features and
Implementation Techniques of the Multicell CASSM," IEEE Transactions on Computers, vol C-28, no.
6, June 1979, pp. 430-445.

99

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

Chairman, Code CS 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Professor David K. Hsiao 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

Ms. Doris Mlezco 2
Code 9033
Naval Pacific Missile Test Center
Point Mugu, CA 93042

Lieutenant Andrew P. Meeks, USN 1
105 Mikel Coun
Summerville, SC 29483

100

